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Preface

This quarterly publication provides archival reports on developments in pro-

grams managed by JPL's Office of Telecommunications and Data Acquisition

(TDA). In space communications, radio navigation, radio science, and ground-based
radio and radar astronomy, it reports on activities of the Deep Space Network (DSN)

in planning, in supporting research and technology, in implementation, and in op-
erations. Also included is standards activity at JPL for space data and information

systems and reimbursable DSN work performed for other space agencies through
NASA. The preceding work is all performed for NASA's Office of Space Operations

(OSO). The TDA Office also peforms work funded by two other NASA program
offices through and with the cooperation of the Office of Space Operations. These

are the Orbital Debris Radar Program (with the Office of Space Station) and 21st

Century Communication Studies (with the Office of Aeronautics and Exploration

Technology).

In the search for extraterrestrial intelligence (SETI), The TDA Progress Report

reports on implementation and operations for searching the microwave spectrum.
In solar system radar, it reports on the uses of the Goldstone Solar System Radar

for scientific exploration of the planets, their rings and satellites, asteroids, and

comets. In radio astronomy, the areas of support include spectroscopy, very long

baseline interferometry, and astrometry. These three programs are performed for

NASA's Office of Space Science and Applications (OSSA), with the Office of Space

Operations funding DSN operational support.

Finally, tasks funded under the JPL Director's Discretionary Fund and the
Caltech President's Fund that involve the TDA Office are included.

This and each succeeding issue of The TDA Progress Report will present ma-

terial in some, but not necessarily all, of the following categories:

OSO Tasks:

DSN Advanced Systems

Tracking and Ground-Based Navigation

Communications, Spacecraft-Ground
Station Control and System Technology

Network Data Processing and Productivity

DSN Systems Implementation

Capabilities for Existing Projects
Capabilities for New Projects
New Initiatives

Network Upgrade and Sustaining

DSN Operations

Network Operations and Operations Support
Mission Interface and Support

TDA Program Management and Analysis

Ground Communications Implementation and Operations

Data and Information Systems

Flight-Ground Advanced Engineering

Long-Range Program Planning

OSO Cooperative Tasks:

Orbital Debris Radar Program

21st Century Communication Studies

iii



OSSA Tasks:

Search for Extraterrestrial Intelligence

Goldstone Solar System Radar

Radio Astronomy

Discretionary Funded Tasks

iv
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Demonstration of Precise Estimation of Polar Motion

Parameters With the Global Positioning

System: Initial Results
S M. Lichten

Tracking Systems and Applications Section

Data from the Global Positioning System (GPS) have been used to determine

precise polar motion estimates. Conservatively calculated formal errors of the GPS

least-squares solution are approximately 10 cm. The GPS estimates agree with in-

dependently determined polar motion values from very long baseline interferometry

(VLBI) at the 5-cm level. The data were obtained from a partial constellation of

GPS satellites and from a sparse worhtwide distribution of ground stations. The

accuracy of the GPS estimates should continue to improve as more satellites and

ground receivers become operational, and eventually a near-real-time GPS capabil-

ity should be available. Because the GPS data are obtained and processed inde-

pendently from the large radio antennas at the Deep Space Network (DSN), GPS

estimation could provide very precise measurements of Earth orientation for cali-

bration of deep space tracking data and co_dd significantly relieve the ever-growing

burden on the DSN radio telescopes to provide Earth platform calibrations.

I. Introduction

Precise navigation and tracking for high Earth orbiter

and interplanetary missions require knowledge of certain

Earth platform parameters, including Earth orientation.

Earth orientation [1] parameters include tim angle (and

rate) of rotation of the Earth relative to a reference posi-

tion, and the position of the solid crust and mantle relative

to the axis of rotation. These parameters can vary unpre-

dictably on a daily (or more frequent) basis due to inter-

actions between the rotating solid Earth, its oceans, and

atmosphere. By incorporating measurements made over

several days and by using a Kahnan filter, it is possible to

smooth and predict the longer-term COlnponents of Earth

orientation. Presently, Earth orientation calibrations for

deep-space tracking are made twice a week by using con>

binations of 70-m and 34-m antennas for very long base-

line interferometry (VLBI) observations of quasar radio

sources. Up to 10 hr per week can be required for this task

for support of Magellan; similar demands are expected for

the Galileo mission. Spacecraft telemetry communication

is generally not possible when Deep Space Network (DSN)

antennas are used for these Earth orientation observation

sessions. Although the present-day VLBI technique ap-



pears sufficient to meet the 30-cm Magellan/Galileo-Earth

orientation requirement (needed within about one day af-

ter the data are taken), the technique leaves less time

available for direct spacecraft tracking. If interplanetary
missions to the Moon, Mars, and ,other destinations occur

later in the 1990s, as expected, DSN radio antennas will

become increasingly busy, and antenna time will be at a

premium.

A relatively new technique for monitoring Earth ori-

entation incorporates data from the United States Global

Positioning System (GPS), which presently includes about

15 navigation satellites, to be expanded to 18 by 1992, and
further to 24 satellites by the mid-1990s. As described in

[2], the GPS data will be combined with VLBI measure-
ments. In this combined system, VLBI observations can

be made with greatly reduced frequency from the present.

The result of the combined GPS/VLBI system is expected

to be an Earth orientation monitoring technique that can
be made more accurate than the original VLBI system

alone, but requires significantly less DSN radio antenna

time. In addition to enhancing productivity of the DSN

by enabling more time for direct spacecraft tracking and
telemetry communication, the improved accuracy of the

new system could help the DSN better support a sub-

nanoradian deep-space tracking capability.

The DSN has installed advanced GPS terminals at

each deep space tracking site for ionospheric calibrations. 1

Since the GPS transmits at two L-band frequencies, tile

lowest order ionospheric path delays can be determined

straightforwardly at each site by using GPS data. These
DSN GPS receivers will soon become the reference sites for

a worldwide, high-precision GPS tracking network. The

TOPEX/POSEIDON oceanography satellite, carrying its
own GPS receiver, will be tracked with GPS differential

techniques by this worldwide network. For several years,
data from other, less precise worldwide GPS stations have

been collected and processed. In order to test the capa-

bility of such networks to provide measurements of Earth
orientation, data from one of the earliest worldwide GPS

experhnents in 1988 were processed to estimate X and Y

polar motion parameters. The results of this test are re-
ported in this article.

II. Experimental Data

The GPS experiment utilized for this study is described

in [3] and [4]. To estimate Earth orientation parameters,

1C. J. Vegos, DSCC Media Calibration Subsystem (DMD), Func-
tional Design Review (Level D), JPL 834-30, vol. 1 (internal docu-
ment), Jet Propulsion Laboratory, Pasadena, California,
May 1, 1987.

a three-day arc (January 19-21, 1988) was selected from
the experiment, which spanned about three weeks. This

particular three-day arc actually did not contain an op-
timal set of measurements, since one of the four fidu-

cial (fixed reference) sites did not collect data on the
first day. However, these data were the first to be pro-

cessed and conveniently available for use. The four fidu-

cial sites were all at VLBI observatories where precise co-
ordinates were available: tIatcreek, California; Fort Davis,

Texas; tIaystack, Massachusetts; and Onsala, Sweden.
The coordinates of the other sites were estimated from

the GPS data: Wettzell, Germany; Canberra, Australia;

Black Birch, New Zealand; Lim6n, Costa Rica; Liberia,

Costa Rica; Cocos Island (off South America in the Pa-

cific Ocean); Mojave, California; and Owens Valley, Cali-
fornia. The data from these 12 stations represent less than

half of the data actually collected over the three-day arc.
Additional stations were left out in order to reduce the

computational load, since all the GPS data were reduced

on microcomputers. Figure 1 shows the location of the
12 sites used and the sparse worldwide coverage that was

available. The satellite constellation in 1988 included only

seven satellites, which provided only partial geometrical

coverage.

III. Approach and Results

GPS-based positioning techniques generally involve a

least-squares estimation of various parameters from the

GPS data. For high-precision applications, such as the de-
termination of Earth orientation, the parameters include

the GPS orbits themselves. Other estimated parameters
include nonfiducial station coordinates; relative clock off-
sets of GPS receivers and transmitters modeled as a white-

noise process from measurement to measurement; zenith

troposphere delays at each site, modeled as a random-walk

stochastic process, with noise level of (1.2 cm)2/hr; the

Earth orientation polar lnotion parameters; and GPS car-

rier phase bias parameters. All parameters were _stimated
simultaneously.

The a priori uncertainties of all the parameters, other

than the Earth orientation parameters, were very large,

effectively infinite. The a priori uncertainty of the polar

motion parameters was initially 50 cm. Since the final
formal sigmas for these parameters ended up at the level

of--,10 cm, the run was repeated with 200-cm a priori

sigmas, but the solutions changed by less than 0.2 cm,

confirming that the a priori sigmas for the polar motion

parameters were not constraining the GPS solutions.

The solutions were determined with a square-root in-

formation filter. The method is described in [5-7]. The



datawerecompressedto 6-rainintervals.Dataweights
usedwere1 cm for the GPS carrier phase and 200 cm for

the GPS pseudorange. As described in [8], the GPS carrier

phase provides a very precise measure of range change but

is ambiguous by an integer multiple of wavelengths. By

processing together the phase and range data and by using
an innovative technique developed for resolving tile carrier

phase ambiguities [8], most of tile carrier phase biases in
North and South America were resolved. Because of corre-

lations between the phase biases and the clock parameters,

resolving the ambiguities is possible only between pairs of

stations and satellites. The greater the distance between

the two stations, the more difficult it is to resolve ambigu-

ities involving that pair. In principle, when carrier phase

biases are resolved, solutions should improve significantly,

since the ambiguous phase data (measuring range change)

has been effectively converted to a very precise (subcen-

timeter) range measurement. One of the goals of this study
was to examine the effect of GPS phase ambiguity tech-

niques on the estimation of global Earth orientation pa-

rameters. Although anabiguity resolution has been known

to dramatically improve the accuracy of baseline estimates

[8], the effect on global Earth platform parameters has not

been studied prior to the analysis presented in this article.

The results appear in Table 1. The differences between

the GPS and VLBI (International Radio Interferometric

Surveying, IRIS) estimates for X and Y polar motion are

listed along with the formal errors front the GPS solu-

tion. Most (--,70 percent) of the GPS formal errors, which

are simply the parameter standard deviations from the co-

variance matrix, are from the computed error (data noise,
geometry, and satellite visibility), with the remainder due

to systematic error from an assumed 4-cm error for each

fiducial station coordinate. The systematic fiducial coor-

dinate errors were calculated from a consider analysis [9]
and are probably conservative, since GPS and VLBI com-
parisons, at least in North America, have shown that the

GPS fiducial coordinate errors are probably at the level of

,-,2 cm or better per coordinate [5]. Note that after am-
biguity resolution, the GPS and VLBI Earth orientation

estimates agree to 5 cm or better in each component.

IV. Discussion

The reader is cautioned that the comparison of polar

motion parameters from GPS and VLBI techniques should

be regarded as prelinfinary, since only a three-day GPS so-

lution was used. IIowever, previous results reported else-
where [10] with somewhat cruder GPS orbit determination

strategies have shown consistency between VLBI and GPS

at the 10-20-era level during a two-year period. The other

results [10] utilized a weaker GPS orbit solution, with
_5-m accuracy. The orbits reported here have been im-

proved to the level of 60-100 cm [7] through careful mod-

eling and orbit estimation techniques, so Earth orienta-

tion accuracy of -,,5 cm is indeed consistent with results

reported elsewhere when scaled for the different orbit ac-

curacies (assuming that the errors are proportional).

The formal errors shown in Table 1 are large enough

(-,-10 cm) so that there is no statistically significant differ-
ence between the GPS and VLBI polar motion estimates.

In fact, the accuracy of the VLBI estimates themselves

is presently believed t.o be _3 era, which is not much
different from the 5-era differences observed. The GPS-

VLBI (IRIS) polar motion differences are actually a mea-

sure of tile offset between the reference frame defined by

the GPS fiducial site coordinates (which were held fxed

in the solution) and the IRIS Earth orientation time se-
ries. Since both the fiducia] site coordinates and the IRIS

Earth orientation valnes were determined with VLBI, it

might be expected a priori that the offset should be zero.
However the fiducial site coordinates were obtained from

a global Crustal Dynamics Project (CDP) VLBI solution

(solution set GLB223 front Go&lard Space Flight Center),
which is not entirely consistent with the IRIS Earth orien-

tat.ion time series: an intercomparison in [11] showed that

1-3-cm discrepancies between independent VLBI solutions

(CDP and IRIS) for polar motion are observed. Although

tile present GPS estimates are probably not sufficiently

precise to detect this discrepancy, it is clear that a uni-
fied reference frame must be defined so that GPS Earth

orientation estimates that incorporate V LB] fiducial coor-
dinates can be related to VLBI estimates of Earth orien-
tation.

Table 1 also shows a dramatic improvement in the ac-

curacy of the GPS polar motion estimates with ambiguity
resolution. This improvement is confirmed both in the

formal calculated errors and in the comparison with inde-

pendent VLBI estimates. 2 The result is intriguing since

polar motion is essentially a global quantity, while GPS
phase ambiguity resolution is most effective for shorter

baselines. In fact, in this experiment, no ambiguities were
resolved between the continents of North America and Eu-

rope (more than 5000 km apart), although most ambigu-
ities of a few thousand kilometers or less over baselines

in North and South America were resolved. Thus, am-

biguity resolution within local continental networks was

still able to significantly improve estimates of global quan-

tities. This process can be understood in the context of

2 Although the Y polar motion GPS-VL_3I difference appears to be

slightly worse, the difference is, in fact, statistically insigmificant.



improving the GPS orbits through ambiguity resolution:

even relatively short distance ambiguity resolution can im-

prove the accuracy of the orbits. These improved orbits,

in turn, result in better estimates for other, global param-

eter estimates. There may be implications for strategies
to determine global Earth platform parameters with GPS
if results, such as those in Table l, are confirmed in future

studies. By incorporating GPS data from a few stations

relatively close (approximately hundreds to a few thousand
kilometers) to the DSN fiducial GPS sites, GPS estimates

of Earth orientation may be considerably enhanced. Data

from these additional sites are fairly easy to acquire. For

example, in California, there are dozens of GPS sites from

which data are routinely collected by several U.S. Govern-
ment agencies. Similar data are now or soon will be avail-

able from Europe and the South Pacific as GPS ground

networks for various National Aeronautics and Space Ad-

ministration (NASA) and international geodetic programs

densify and GPS ground stations for other missions (such
as TOPEX/POSEIDON and the Earth Observing System,
EOS) became operational.

Other facets of GPS technology applicable to Earth ori-

entation include the potential for a near-real-time capabil-

ity and support for very high-precision (--_1 nanoradian)
VLBI deep space tracking/navigation. An advanced ver-

sion of the DSN GPS Rogue receiver is in development
that will automatically perform numerous data reduction
steps in the receiver while the data are collected in the

field. 3 This would enable very fast data turnaround and

the potential for routine delivery of Earth platform pa-

rameters the same (or next) day. Certain data types used
by the DSN, such as differential Doppler, require accu-
rate Earth orientation calibrations to achieve their full

navigation potential. 4,5 A GPS network in California is

presently being tested for rapid production of GPS orbits

and other related parameters. A recent test using receivers
in California resulted in GPS orbits estimated in less than

24 hours after the data were acquired in the field. The

ultra-precise (1-nanoradian or better) VLBI deep space

tracking system currently being studied at JPL [12] un-
der DSN Advanced Systems for future planetary missions

3 W. B. Melbourne, J. B. Thomas, C. L. Thornton, L. E. Young, and

T. P. Yunck, Turbo Rogue: The Next Generation GPS Geodetic

Receiver (internal document), Jet Propulsion Laboratory, Pasa-
dena, California, November 9, 1989.

4 S. W. Thurman, "Deep-Space Navigation Performance of X-Band
(8.4 GHz) Differenced Doppler Data," JPL Interoffice Memo-

randum 314-486 (internal document), Jet Propulsion Laboratory,
Pasadena, Calfornia, July 24, 1990.

5 S. W. Thurman,"DSN Baseline Coordinate and Station Location

Errors Induced by Earth Orientation Errors," JPL Interoffice Mem-

orandum 314-488 (internal document), Jet Propulsion Laboratory,
Pasadena, California, July 25, 1990.

incorporates the estimation of Earth platform parameters

in the course of multiple VLBI observations of quasars
and spacecraft. Centimeter-level Earth orientation knowl-

edge from GPS could constrain the a priori uncertainties

in the Earth platform parameters to be further refined

and improved from the VLBI data. Such a priori knowl-

edge would enhance the performance of the system since

it would require less data (and therefore fewer DSN re-

sources) to achieve the desired accuracy.

As discussed in [2], GPS data can be quite sensitive

to the rate of change of UT1-UTC, also known as the
length of day. This information could be combined with

relatively infrequent VLBI measurements of UT1-UTC to
provide the DSN with a continuous and accurate record

of UT1-UTC, a quantity that is needed along with polar

motion for deep space navigation, tIowever, the sparse
ground coverage and relatively small number of satellites

available during the 1988 GPS experiment hindered the

determination of the length of day (the UT1-UTC rate),
even with the three-day arc used. The three-day arc GPS

estimate of the UT1-UTC rate had formal uncertainty of
more than 5 cm/day. In future experiments with more

satellites and ground stations operating, it should be pos-

sible to demonstrate a UT1-UTC rate accuracy of better

than 1 cm/day along with accuracy for pole position im-

proving to the level of 1-2 cm. One such experiment is
expected to take place in early 1991.

V. Summary and Conclusions

An initial GPS solution for X and Y polar motion agrees
with VLBI to better than 5 cm in each component. The

GPS experiment was successful beyond expectations, with

GPS-VLBI agreement better than the -_10-cm-level pre-

dicted from the GPS solution covariance. Even more sig-
nificant, perhaps, is the fact that the GPS solution was

obtained with a somewhat sparse ground network track-

ing only seven GPS satellites, about one-third of the full

GPS constellation, which is expected to be complete by
1992.

The GPS polar motion estimates improved significantly
after GPS phase ambiguity resolution. This is the first

demonstration that global Earth parameters estimated

from GPS data improve when ambiguity resolution is per-
formed, even though GPS ambiguity resolution is generally
carried out over baselines much shorter than the radius of
the Earth.

Further improvement in GPS polar motion estimates to

the few-centimeter level is eventually expected as advanced



DSN-typeGPS receivers are installed worldwide, tile GPS

constellation begins to fill out, and the receivers are spread

out more evenly around the globe. Additional GPS exper-

iments are planned in the coming years to monitor this

improvement, confirm the results reported in this article,

and to demonstrate estimation of polar motion rates and
the UT1-UTC rate with GPS.

The potential benefits to the DSN of using GPS for

Earth platform parameter estimation are becoming clear

with demonstrations of the inherently high precision and

high data density that are available with GPS. The GPS

measurements can be combined with DSN VLBI observa-

tions to produce a time history of Earth orientation and

rotation with high accuracy and high temporal resolution,

requiring only a fraction of tile antenna time that must

presently be allocated to measure these quantities with

VLBI alone. In addition to conserving DSN resources,

GPS techniques could eventually result in a near-real-time
estimation capability of Earth orientation for tile DSN.

The centimeter-level Earth orientation accuracy expected
from the GPS data could also support and enhance an

ultra-precise (subnanoradian) VLBI-based tracking and
navigation system for the DSN.
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Table 1. Difference between GPS and VLBI Earth orientation estimates from

January 19-21, 1988

PaJ'ameter
Initial GPS solution

(no ambiguities resolved)

Final GPS solution

(with ambiguity resolution)

X pole

(o" formal error)

Y pole

(a formal error)

+16.3 cm

(+ 15)

-2.0 cm

(ztz 19)

-3.6 cm

(± 8)

-4.4 cm

(4- 12)
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Analysis of a Thick Dichroic Plate with Rectangular Holes

at Arbitrary Angles of Incidence

J. C. Chen

Ground Antennas and Facilities Engineering Section

A thick dichroic plate that is transparent to one frequency band while at the

same time reflective to other frequencies is needed for high-power transmission in

the Deep Space Network. Software based on the method of moments was developed

to design a thick dichroic plate with rectangular holes. A test dichroic plate was

fabricated, and an experiment was performed to verify the computer code. Good

agreement was found between theory and experiment.

I. Introduction

The Deep Space Network has a need for dichroic plates

having an insertion loss as low as 0.04 dB at the pass-

band and the ability to handle up to 500 kW of power

[1]. Because a thin dichroic plate may not be mechani-

cally suitable for these requirements, a thick dichroic plate

design is considered. Also, using rectangular rather than

circular holes provides the designer with an extra degree

of freedom. Therefore a study of a thick dichroic plate

with rectangular holes was made, and a computer code

was developed.

The relationship between the rectangular holes, the ar-

ray lattice of an infinite dichroic plate, and the incident

wave is shown in Fig. 1. The design variables of the soft-

ware are hole size, lattice size and shape, thickness of the

plate, dielectric constant in the hole, and angle of inci-

dence of the linearly polarized wave. The program cal-

culates the amplitude and phase of both the transmission

and reflection coefficients of the two orthogonal linear po-

larizations (TE and TM). The program was run on JPL's

Cray X-MP/18 supercomputer.

II. Analysis

The analysis of a thick dichroic plate with rectangular

holes is carried out in a series of steps. First, a model of

a half-space infinite array is constructed. A complete set

of basis functions with unknown coefficients is developed

for the waveguide region (waveguide modes) and for the

free-space region (Floquet modes) in order to represent the

electromagnetic fields [2]. Next, the boundary conditions

are applied at the interface between these two regions. The

method of moments is used to compute the unknown mode

coefficients [3,4]. The scattering matrix of the half-space

infinite array is then calculated. The reference plane of

the scattering matrix is moved half a plate thickness in

the negative z direction. Finally, a dichroic plate of finite

thickness is synthesized by positioning two plates of half

thickness back to back. The total scattering matrix is



obtained by cascading the scattering matrices of the two

half-space infinite arrays.

A. Floquet Modes and Waveguide Modes

The analysis starts with an infinite array in half space,

Fig. 2(a), consisting of a free-space region (z > 0) and a

waveguide region (z < 0). The electromagnetic fields in

each region are represented by a set of orthonormal ba-
sis functions, Floquet and waveguide modes respectively,

which satisfy Maxwell's equations. The Floquet modes are

given by

_TE 1 fl,5c - O_my ej(_,.o:+O.y) (1)
_mn(x, Y) = x/DxDv sin _ V/_m +/3_

for Floquet TEm,_ modes, and

1 O_ma?+ fin/)--TM

_m,, (X,V) =
x/D_:Dy sin fit _ +/32

for Floquet TMm,_ modes, with

__ d (_'_'+°-_) (2)

and

27rm

_m = --a-- -- _0sin0 cos¢ (a)
/--'x

2_rn 2rrm
fin -- cot f_ - k0 sin 0 sin ¢ (4)

D v sin f_ D,

where k0 is tile wave number in tile free space.

The waveguide modes are given by

--TE

*m.(X,V) =

x _-- cos + sin + x
LH_ \H= _ T

Hx \ Hx + cos\Hv +

for rectangular waveguide TEmn modes, and

(5)

mn (x,y) : I{mTr_ 2 nx 2 H_:H v
+

× _-TC°S_H= +--sin -y2+-:2-)=

+ -- sm + cos
H v \ Hx

(6)

for rectangular waveguide TMmn modes, where em is tile
Neumann factor and equals 1 for m = 0 and 2 for rn > 0.

The periodicity of the infinite array simplifies the analy-

sis to a study of a single equivalent element. If the probleln

did not have this periodicity, the mutual coupling would
have to be evaluated element by element, increasing the

complexity of the computation.

B. Boundary Conditions and Method of Moments

The electromagnetic field in the waveguide is expressed
as a sum of incident and reflected waveguide modes, while

in the free-space region it is expressed as a sum of inci-
dent and reflected Floquet modes. Boundary conditions

are applied at the interface between two regions, i.e., the

transverse electric and magnetic field must be continuous

across the junction at z = 0. This leads to an integral

equation for the unknown transverse electric field at the

boundary. The infinite-array scattering problem then be-

comes similar to a two-region waveguide problem.

'rile method of moments is used to transform t he inte-

gral equation into a matrix equation suitable for evaluation

on a digital computer. Solving the set of linear equations

gives the unknown mode coefficients in both regions. The
time required for filling the matrix depends on the num-

ber of Floquet and waveguide modes used. The number of

waveguide modes and Floquet modes used in the program

can be increased by the user to ensure convergence of the
solution [5,6].

C. Scattering Matrix and Reference Plane

The characteristics of the infinite array referenced to

z = 0 are represented by a scattering matrix S which con-
tains tile transmission and reflection information for the

free-space/waveguide junction.

10



[$11 S12]

S = [5.2, S2..J (7)

where 5'11, $12, $21, and 5'22 are matrices with 1 repre-

senting the free-space region and 2 the waveguide region.
The size of matrix $11 is 2 by 2, ,5'22 is n by n, $12 is

2 by n, $21 is n by 2, and n is the number of waveguide
modes used. For an arbitrary set of incident waveguide

modes contained in vector al and incident TEoo and TMoo

Floquet modes contained in vector a2, the reflected mode
vectors bl and b2 are determined by the following set of

equations.

bl = Sllal + S12a2 (8)

b2 = S21al + $22a2 (9)

Moving the reference plane in tile waveguide region

from z = 0 to z = -t/2, Fig. 2(b), where t is the thickness

of the plate, the elements of tile new scattering matrix S'
become

SI1 l(t/, Y) = Sll (_, 'o) (10)

S[2(u,v)= Sl_(u,v)exp (-J%2) (11)

S_l(u,v)= S21(u,v)exp (-J%2) (12)

where % and % are the propagation constants of modes
u and v.

D. Cascading and Finite Thickness

Scattering by a dichroic plate with finite thickness can

be analyzed by considering two infinite-array problems.

The space is divided into four regions: a free-space region
(region I), two waveguide regions (regions II and III), and

another free-space region (region IV), as shown in Fig. 3.

The scattering matrix with reference to z = -t/2 for re-

gions I and II is S', and the scattering matrix with refer-
ence to z = -t/2 for regions III and IV is S', which is the

transpose matrix of S'.

S_' 1 = S;2 (14)

= s'l (15)

S_'1 = 5"12 (16)

s% = sh (17)

The scattering matrix S T for the finite-thickness plate

is determined by cascading these two matrices.

5.1T1= S,12(I _ ¢,, ,_, _-1 ,,., , (18)_-'11_'221 SI 1,-_21 -[- Sll

sT = S/1.,(/. -- --11,J22!¢"_" _-' S,2" (19)

ST = S,I/l(I-- <'' <"' 1-1 ,_ ,o22,_11 / $21 (20)

s"l(I- ' .... ' '.. = $22511 ) _-$22 ,_, 2 .9.'.,'2 (21 )

where I is a unitary matrix.

III. Verification of the Computer Code

The dichroic plate computer program was first checked
against the available calculations for a thick dichroic plate

with square holes at normal incidence [7]. Tile results

showed good agreement. Next, a 13.25-by-15.5-in. inetal-

lic dichroic plate (Fig. 4) was fabricated to veri_' the

computer code. The dimensions of tile plate are H_ =

0.771 in., Hu = 0.757 in., D_ = 0.940 in., D u = 0.9,t0 in.,

ft = 60.0 deg, and t = 1.411 in., with a tolerance of

0.001 in. Figure 5 shows the convergence of tile solution
at 8.3 Gtlz for TM polarization with respect t,o tile num-

ber of waveguide modes used. Satisfactory convergence is

achieved by using 40 waveguide modes. The amplitude and
phase of the transmission and reflection coefficients from

8 to 9 GIIz were computed with 40 waveguide modes for

TE and TM polarizations (Figs. 6-9). Since the plate w_s
built merely to verify the software, it was not optimized

for any specific passband.

The configuration of the experiment is shown in Fig. 10.
The reflection coefficients were measured from 8 t.o 9 Gtlz

for 0 = 30 deg and ¢ = 90 deg. The feed used was a

22-dB corrugated horn with a far-field phase center

3.125 in. inside the horn aperture. A lens was added to tile

horn aperture to bring the far-field phase center to 2.0 in.

outside the horn aperture. Since the new phase center was

closer to the dichroic plate, a smaller plate with less than

-25-dB edge taper was used.

The experimental results and the calculation using

40 waveguide modes are shown in Figs. 11 and 12 for TE

11



and TM linear polarization, respectively. The curves are
in excellent agreement except for frequencies higher than

8.6 GIIz for TM polarization. This area of discrepancy can

be explained by considering the effects of non-plane-wave
incidence.

The analysis of the thick dichroic plate assumes that

a linearly polarized plane wave is incident on an infinite

dichroic plate at 30 deg. In the experiment, a corru-

gated horn was used. The field radiated contains plane

wave components that are incident at angles other than

30 deg. This can result in grating-lobe problems at high

frequencies, as can be seen in Fig. 12 for frequencies above
8.6 GItz.

IV. Conclusion

An analysis of a thick dichroic plate with rectangular

holes has been presented. The good agreement between
calculation and experimental data demonstrates the accu-

racy of the software. Further studies on the grating lobes
due to non-plane-wave incidence are in progress and will

provide a better understanding of the performance of the

dichroic plate when illuminated by a corrugated horn.
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An Analysis of the Least-Squares Problem for

the DSN Systematic Pointing Error Model
L. S. Alvarez

Ground Antennas and Facilities Engineering Section

A systematic pointing error model is used to calibrate antennas in the Deep

Space Network. This article describes and analyzes the least-squares problem and

the solution methods used to determine the model's parameters. Specifically st udied

are the rank-degeneracy problems resulting from beam-pointing error measurement

sets that incorporate inadequate sky coverage. A least-squares parameter subset

selection method is described and its applicability to the systematic error modeling

process is demonstrated on a Voyager 2 measurement distribution.

I. Introduction

A pointing error model is used ill tile Deep Space Net-

work's (DSN's) antenna-calibration process. With the ex-

ception of environmental effects, the major sources of er-

rors in an antenna-pointing system are systematic and

repetitive and therefore can be closely modeled. Exam-

ples of parameters in the model are residual errors in the

geometric alignment of the mount axes and fixed-angle en-

coder offsets. Data collected from spacecraft and radio star

observations are used to determine the parameters in the

model and are then entered into the pointing system to

accurately point the antenna. The origins of the pointing

error modeling approach for radio-frequency (RF) anten-

nas can be found in [1,2] while its development within the

DSN is discussed in [3]. 1

a R. L. Riggs, "Antenna Pointing Angle Corrections," DSN Antenna
Seminar, Videotapes 49-54, Jet Propulsion Laboratory, Pasadena,
California, May 1986.

The complete pointing error model is the sum of its

separate error components. Table 1 shows individual error

sources and the elevation/cross-elevation (or declination/

cross-declination, depending on antenna mount) regressor

variables used to estimate parameters. See [1,2,4] for a

more thorough discussion of these parameters. Currently,

this entire model is set in motion in the antenna-pointing

system by entering parameter values manually. The DSN

70-m antennas track targets in both the computer com-

mand and precision modes of operation, each defined by a

set of axis position transducers. (See [5] for a discussion

of the axis servos and controllers.) The 34-m antennas

employ only the computer command mode. In [3,6] rec-

ommended model parameter sets are given that apply to

each tracking mode of these antennas; they are also re-

peated in Table 2. As can be seen, nine error parameters

are used to estimate in the precision lnode and eight in

the computer command mode. In practice, the model pa-

rameters are determined by performing a least-squares fit

17



on the pointing offset data collected from the spacecraft

and/or from radio star observations• In this article, refer-
ence will only be made to the particular combinations of

parameters in Table 2.

This article explores the numerical properties of tile sys-

tematic error modeling process• Specifically, the analysis
focuses on the numerical properties of the matrix formed

by the pointing model regressor variables evaluated over

tile beam-pointing error data sets. These measurement

sets may not cover enough points in the sky to accurately

estimate all of the parameters. This is due to the finite

number of targets and to other practical operational con-

straints, such as lack of antenna time. On the other hand,

the objective of particular calibrations may be to opti-

mize pointing in a particular region of the sky, such as
along a constant declination. In practice, however, tile lim-

ited measurement sets lead to rank deficiency in the least-

squares measurement distribution matrix. This study of

tile problem will lead to a more objective approach to pa-

rameter selection and parameter estimate interpretation.
In addition, the analytical techniques provided here may

be used to predict which directions in the sky will yield

optimal estimation•

The remainder of this article will formulate the system-

atic error parameter estimation problem and then estab-
lish a hypothetical performance index for matrix condi-

tioning. In addition, the numerical tools presented will be

used to analyze practical sky distributions in the context

of the least-squares approximation and the current solu-
tion method will be reviewed. The article concludes with

a proposed algorithm for parameter selection.

" Sxell

5xelm

5ell

• 6elm

Azell (eta, azl)

Axel,n(el .... az._)

Aelx(ell, azl)

Aelm(el .... azm)

(1)

or

y = Ap (2)

where the offset vector y is 2m x 1, the measurement dis-

tribution matrix A is 2m x n, and the parameter vector p

is n x 1. As can be seen, equations representing both the
cross-elevation and elevation error fimctions are obtained

for each single observation point in the sky. Let the least-

squares estimator be 15 and satisfy the following matrix
equation

:9 = A15 (3)

where the vector _ contains the estimated (or fitted) values

to the cross-elevation and elevation offsets of Eq. (1). The
difference between the individual elements, or residuals, is
defined as

ri = Yi -- _li (4)

The method of least squares chooses the parameter esti-
mate 15, such that the following quantity is minimized

II. Model Generation

In order to accurately point the antenna, pointing er-

ror correction models must be generated from radio star

or spacecraft pointing offset data. This section deals with

the model-fitting process, which uses the least-squares al-
gorithm and assumes that the measurement data sets are

accurate. At this time, the estimation process does not

deal with uncertainties in the conical scan pointing offsets

and radio star boresights except in human filtering of very
large nonrepeatable and unexplainable offsets.

A. Least-Squares Problem Formulation

The parameter vector p of the systematic pointing error

model is determined by performing a linear least-squares

fit on the offset data. The estimation problem is formu-
lated from m observations as

'2rt_

E (5)
i--1

The estimate satisfies the following matrix equation [7,9]

15= (AtA)-lAty (6)

where A t is the transpose of A. Caution must be given

to least-squares problems in which the regressor variables,

or basis terms of A, are not truly independent. In such

cases the measurement distribution matrix A may be close

to, or is, rank deficient. If A is rank deficient, then there

are an infinite number of solutions to the least-squares
problem and no conclusion can be drawn as to the role of

the individual regressor variables [9].
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During the systematic pointing error estimation pro-
cess, limited data sets and inherent correlations ill the

pointing error model have led to rank deficiency and its

associated problems. This situation was discussed in [8]

where the condition of empirically correlated regressor
variables was termed "inulticolinearity." It was pointed out

in [8] that regressor variables of the model are not truly

independent, tIowever, this is not accurate when a proper

combination of parameters is selected, as recommended in

Table 2. The degree of linear independence in the columns
of matrix A for various antenna configurations is strongly

dependent on the distribution of the observation points
over the sky. This situation and its effect on the pointing
error estimation is discussed below.

B. All-Sky Model Analysis

An analytical approach was taken to obtain a perfor-

mance index for the numerical conditioning of the sys-

tematic error least-squares problem and to compare it with

results from practical measurement sets. One such perfor-
mance index can be determined by examining a hypothet-

ical all-sky uniform distribution of pointing offset data.

These measurement points are used to generate measure-
ment distribution matrices for different combinations of

parameters. Intuitively, it would make sense to obtain

pointing error offsets uniformly throughout the field of
view of the antenna and conclude that this is the opti-

mal distribution for input into the parameter estimation

problem, tIowever, observing the basis terms of the point-
ing model given in Table 2, it can be seen that not all

terms are simultaneously functions of both azimuth and
elevation. This condition will tend to result in redundant

column elements of A; thus, optimal matrix conditioning

will most likely not be obtained with the all-sky distribu-
tion. However, as will be shown, all-sky matrices do have

acceptable conditioning and can be used for a suitable per-

formance index. Singular value decomposition (SVD) was

used to analyze the linear independence of the columns of

A and is defined in the following theorem.

Theorem 1. LetAbearealmxnmatrixwithm > n.

Then there is an orthogonal matrix U = [Ul,...,Um] of

order m and an orthogonal matrix V = [vl .... , Vn] of or-
der n such that

[0]
w]lere

= diag(o'l,..., crn) (8)

and

al > a_ >...>__ a,, >__0 (9)

The tlleorem is taken from [10] and the more gen-

eral SVD is proven in [9]. The numbers O'l,a2,...,cr,,

which are unique, are called the singular values of A. The

columns [ul,u2,...,um] of U are called the left singular
vectors of A, and the columns [vl,v2,...,vn] of V are

called file right singular vectors of A. SVD is extremely

useful in analyzing numerical rank deficiency because the

singular values indicate how near A is to a matrix of lower
rank. The matrix A has rank r if an(I only if

_r > 0 = _r+l (10)

Mathematically speaking, the smallest singular value
of A is the 2-norm distauce of A to the set of all rank-

deficient matrices [9]. The ratio of the largest to small-

est singular value is termed the condition number of A.

This number quantifies the sensitivity of the least-squares

solution I3 of Eq. (2). Large condition numbers indicate

that relatively small changes in A or tile offset vector y
can induce large changes in the computed least-squares

solution 15. This is undesirable since parameter vector

estimates computed from such ill-conditioned measure-

ment distribution matrices can lead to erroneous pointing

offset corrections that will be applied in future antenna

tracks. The pointing model corresponding to tile DSS 14
70-m antenna (i.e., latitude = 35.426) was used to gener-

ate the full A matrix of relevant error parameters. The

uniform distribution consists of 9-deg increments in eleva-

tion and 20-deg increments in azinmth. This full measure-
ment set is illustrated in Fig. 1. The singular values of

the A matrices corresponding to tim precision mode and

computer command mode of operation are presented in
Table 3.

As can be seen, tim numerical conditioning for the lea.st-

squares problem resulting from this hypothetical all-sky
distribution is well behaved. Both the precision mode and

computer command mode parameter sets yield A matrices

with reasonably nonzero singular values and small condi-

tion numbers, implying full-colunm rank. Another quan-

tity commonly considered in least-squares analysis is the

correlation matrix derived fl'om (AtA) -a of Eq. (6), which
is numerically shown in Table 4. The matrix (AtA) -1 is
an estimate of the covariance matrix for the solution vector

of the least-squares problem. Values near one in the cor-

relation matrix indicate high pairwise correlation between

the estinaated parameters.
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It is evident that such high correlation is implied be-

tween the first three parameters (az collimation, fixed az

encoder offset, and az/el axis skew) of the computer com-
mand mode set. Evaluation of the basis terms correspond-

ing to these parameters in the limited elevation range of 0

to 90 deg results in the pairwise correlation and cannot be
avoided regardless of the azimuth distribution. The impli-

cation of inherent correlation to parameter estimate sta-

bility was investigated through Monte Carlo simulations.

Tile empirical estimation covariance matrix was computed

and found to be in very close agreement with the theoret-
ical covariance matrix computed from (AtA) -1, thus il-

lustrating that stable parameter estimates will result from

an all-sky distribution. It was noted in the simulations
that individual estimates of the first three elements al-

ways varied in the same direction of magnitude, but that

differences never exceeded the bounds predicted in the the-

oretical standard-deviation vector given by

vi_rp = -- (11)
i----1 O'i

where the vi and _ri are defined in Theorem 1. The above

equation is obtained by solving for A in Eq. (7), substi-

tuting it into (AtA) -1, and then taking the square root

of the diagonal of the resulting matrix.

The numerical conditioning of the least-squares estima-

tion of antenna precision and computer mode systematic

error parameter sets was evaluated above for an all-sky

distribution. The resulting measurement distribution ma-
trix for each mode of operation was found to have full

rank, thus ensuring unique least-squares solutions for _.

Also, the large values in the correlation matrix were not

seen to degrade the stability of repeated parameter esti-
mates. The linear dependence of the parameters implied

by the correlation matrix is due to their mathematical defi-

nitions and selecting them simultaneously will not degrade

the estimate of the measurement vector y. Such rich off-

set distributions can never be obtained in practice, thus

it is inevitable that poorer matrix conditioning will lead
to least-squares estimates of poorer quality. As shown by

this analysis, the singular values and condition number of

the distribution matrix A are key parameters in evaluating

ill-conditioned least-squares problems.

C. Reduced and Sparse Data Sets

Current practices dictate that systematic error models

be generated from antenna-pointing error-correction data

taken from as much of the sky as possible or from an area

defined by one or two declination angles. The first is used

to generate all-sky pointing models, while tile second cot::-

putes model parameters applicable only in limited direc-

tions of the sky. Both situations typically diverge from the

hypothetical all-sky example since the basis terms of the

pointing model are evaluated in fewer, and perhaps more

redundant, directions. Their effect on the least-squares

estimation process will be illustrated with examples.

Figure 2 shows the sky trajectory for the Voyager 2
spacecraft. Conical-scan offset data collected at a decli-

nation of -22.5 deg clearly represent only a small por-
tion of the total sky measurement space. Tables 5 and

6 show the singular values, condition numbers, and theo-

retical standard deviations in millidegrees (mdeg) for the

least-squares estimate using the A matrices generated for

precision and computer command operation. As implied

in the tables, matrix condition deteriorates in both param-
eter sets because of reduced measurement space. The the-

oretical standard deviations of the all-sky parameter sets

are shown in mdeg in Table 7. Comparison with those

of Table 6 illustrate the degradation of the least-squares

parameter estimation. In [8], least-squares parameter fits
were done on Voyager 1 conical-scan data obtained from

the DSS 14 64-m antenna. The results were parameters

that were too large in magnitude to be realistic or practi-

cal and that were unstable on a day-to-day basis. It has
been shown through SVD analysis that such ill condition-

ing of the systematic error least-squares problem can, in

general, be inferred a priori for any constant declination
measurement set.

Figure 3 shows sky distribution for a radio source bore-

sight offset file taken at the DSS 13 26-m antenna. The dis-

tribution is typical of data gathered during planetary radio
astronomy experiments--here, for four radio sources. The

pointing model regressor values were once again evaluated

at the source coordinates and results of the SVD analysis

are shown in Tables 8 and 9. Condition numbers for pre-

cision and computer command mode parameter sets are

comparably small in magnitude to those from an all-sky
distribution. The smallest singular values are also reason-

ably nonzero. Only minimal estimate degradation is pre-

dicted by the increase in theoretical standard deviations.
Furthermore, the magnitude of this uncertainty is still rea-

sonably small in the context of parameter estimates, which

are usually in the tens of mdeg. Tiffs example illustrates
that rank deficient measurement distribution matrices can

be avoided by using recommended parameter sets and by

evaluating the regressor variables with adequate sky dis-

tribution of pointing offsets. Concluding that such a mea-

surement set is adequate for the least-squares model fitting
is essentially putting emphasis on the norm of the result-

ing solution vector 15 instead of minimizing the norm of the

2O



residual vector r of Eq. (4). This approach appears to be

the most logical given that the measurement uncertainties
are not modeled. It has also been shown that, for radio

source pointing calibrations, this matrix condition analy-

sis can be done during pretrack activities, thus influencing

the scheduling of calibrators.

It must be stressed that these results hold only for the

sets of parameters recommended in Table 2. Different com-

binations of 21 error coefficients in the current pointing

model will yield different, and ill some cases disastrous,

numerical properties of the matrices involved in the com-

putation of the least-squares solution.

III. Solution Methods

A. Parameter Selection

The two goals of the modeling process are to quan-

tify contributors to the antenna's systematic pointing error

so that pointing can be corrected and so that knowledge
of the antenna's mechanical and structural characteristics

can be acquired. To achieve both of these objectives si-

lnultaneously, identical parameter vectors must be chosen
for estimation on a consistent basis. These parameters for

tile 70-m and 34-m antennas in the applicable mode of op-

eration have been given in Table 2. Subsets of these vec-

tors should be chosen either when parameter values are

physically known a priori or when they are consistently
estimated with small magnitudes. In practice, however,

the goal of correct pointing can be achieved without ac-

curate knowledge of actual antenna error characteristics.

Optimization may be based on any random set of parame-
ters that minimizes the sum of tile squares of the residuals

given in Eq. (5) without regard for physical interpretation.

Regardless of the estimation plfilosophy practiced,

problems always arise when building models for partic-
ular regions of the sky--for example, along a line or band
of constant declination for one or more sources--or for

a particular spacecraft. The rank deficiency that plagues

least-squares problems in these cases generates uncertainty

in parameter selection and interpretation. IIowever, such
models for locally optimized pointing are needed for criti-

cal spacecraft and holography tracks and for those tracks

of single sources known as strong, reliable antenna calibra-

tors. The current least-squares solution method described
next uses the SVD to accommodate ill-conditioned mea-

surement distribution matrices.

B. Singular Value Decomposition

The SVD subroutines in the systematic error modeling

software that were used to solve the least-squares problem

were taken from [11]. A key feature of tile SVD method

is its ability to handle rank deficiency. Ill-conditioned A

matrices result in tile rank (A) = r being less than the

parameter dimension n. This results in a rank-deficient

least-squares problem that has an infinite number of so-
lutions, for if the vector p is a minimizer and tile vector

z E null(A), then p + z is also a minimizer. Tile SVD
method is useful in such situations since it is a reveal-

ing and complete orthogonal decomposition. The routines

from [11] basically implement the following theorem taken

from [9], given here without proof.

Theorem 2. Suppose UtAV = E is the SVD of

AC_mxn with r = rank(A). If U = [ua,...,um] and

V = [Vl,...,Vn] are colunm partitionings and yG _'"
then

= "[Yv /12)
cq

i=l

minimizes II Ap - y Itaand has the smallest 2-norm of all
minimizers. Moreover

IIApLs -- y i1_= _ (-¢y)_ (13)
i=r+l

Note that if r < n, tiffs corresponds to simply adding a

zero multiple to tile solution vector PLS rather than adding

random large-valued multiples produced by tile near-zero

singular values. This may reduce uncertainty in tlle esti-

mated coefficients, as in Eq. (ll), but increases the resid-
ual norm, as in the increased summation index of Eq. (13).

This point was touched on earlier. In practice, one must

still come up with a numerical estimate i" of r. The sys-
tematic error modeling software estimates the numerical
rank ÷ofA as

O"1 _ --'O¥ __> _ > cr,=+l _> '' "O"n (14)

where the tolerance 6 is chosen to be al, scaled by a

machine-l)recision dependent factor. The selection of b
results in

Pi" = _ U[Yvi 15)
i=l °'i

as an approximation to PLS- If a,= >> 6, theu pi. is a

very close approximation to tile true minimizer PLS since
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A can be unambiguously regarded as a matrix with rank

[9]. When [_rl,...,o',_] do not clearly split into small
and large values, rank determination may be somewhat

arbitrary.

C. A New Algorithm for Parameter Selection

As has been shown, the SVD solution currently alle-

viates the rank-deficiency problems associated with lim-

ited pointing offset distributions. This means filtering out

small singular values of A and replacing them with the
matrix At. defined as

i=1

where ? is tile numerically determined estimate of the rank

of A. As discussed in [9] such a cutoff makes sense when
the measurenlent distribution matrix is derived from noisy

data. IIowever, in this case, A is being evaluated using

accurate epllemeris from observed targets, as in Eq. (1).

In other applications, rank deficiency is an indication of

redundancy among factors that comprise the model. As
has been shown in previous sections, redundancy among

systematic error regressor variables occurs in the estima-

tion process only when dealing with limited and reduced

pointing measurement sets. In these cases, the system-
atic error predictor A_p_ used in subsequent tracking will

involve all n redundant factors that may have been cho-

sen as a result of random parameter selection. Although
such solutions may correct future pointing, parameter esti-

mates can obscure physical interpretation of true antenna

mechanical characteristics. In such instances, it is argued

that the least-squares solution vector should contain at
most f nonzero systematic error parameters, which in turn

dictate which columns of A will be used in approximating

the observation vector y. The problem of choosing the ap-

propriate colunms of the measurement distribution matrix
is termed subset selection. The SVD-based subset selec-

tion procedure that has been chosen for this least-squares

application is summarized below:

(1) Compute the SVD A = UEV t and use it to deter-
mine a rank estimate ÷.

(2) Calculate a permutation matrix P such that the
columns of the matrix B1 G _,,_x_in AP = [B1 B2]

are "sufficiently independent."

(3) Predict y with the vector Apsub where Psub = [Z 0] t

and z • R÷ minimizes II - y 112.

Using systematic error modeling, the rank deterlnina-

tion in tile first step can be chosen with more heuristic

criteria instead of those used in Eq. (14). The new criteria

are based on the matrix condition number and the mag-

nitude of the theoretical standard-deviation vector given

by Eq. (11). Given ?, the first ÷ columns of permuta-
tion matrix P give the column indices of A for use in the

least-squares estimation. These are equivalent to the pa-

rameters from which the model is selected. A thorough

discussion of the various approaches to this problem can

be found in [9,10]. Below is a summary of the algorithm to
compute P that was chosen and implemented in the sys-

teinatic error modeling software. It is based on both the

SVD and on QR factorization with the column-pivoting

algorithm. For A • R _x_, QR factorization with column

pivoting from [9] produces AP = QR where

-0,,]'l'n -- /q

n-÷

(17)

where ÷ is the rank (A), Q is orthogonal, Rll is upper tri-

angular and nonsingular, and P is a permutation matrix.

This factorization implies that the first ÷ columns of Q
form an orthonormal basis for range (A). It is the desired

result since the measurement vector y in the least-squares

problem may be approxilnated by the first _ columns of
the matrix AP, which is just B1 of the second step above.

This is equivalent to choosing the first _ parameters of Pp

for estimation, which is equal to the vector z in step three

above. As in a previous section where the case for cutting

off singular values in the SVD method was presented, re-
ducing the order of the parameter solution vector will also
increase the residual norm.

Unfortunately, QR factorization with cohmm pivoting

alone is not a totally robust method for computing the

permutation matrix P [9]. The preferred algorithm im-
plemented in the software that uses both SVD and QR

factorization is presented in the revised steps below:

(1) Compute the SVD A = UEV t and use it to deter-
mine a rank estimate _. Save the matrix V.

(2) Apply the QR factorization with colunm pivoting
to the subset ofV t : QtV(:,l : ÷)tp = [Rll R12]

and set AP = [B1 B2] with B1 • _3Fnxe and B2 •
_,,_x(_-_).

(3) Determine z • _÷, which minimizes I! B_z - y I1-_.

The main contribution of this algorithm is facilitating

parameter selection for reduced and constant declination-

pointing measurement sets. In the latter case, its appli-

cation will ensure consistent parameter selection for par-

ticular radio sources and spacecraft tracks. This subset
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selection procedure essentially eliminates parameters that

the algorithm has deemed unobservable in the given mea-

surement distribution. The next step is to decide how

to deal with these excluded parameters. One approach

is to simply ignore them and proceed as usual with the

least-squares estimation with tile reduced vector z, as de-

termined above.

A different approach, when possible, is to use physically

known or accurate a priori estimates for unobservable pa-

rameters and subtract their contributions from the mea-

surement vector y before estimating z. Such an option

is available in the current software. The resultant solu-

tion vector should be more consistent with all-sky models.

Finally, it should be noted that the tools presented here

can be used for the opposite effect (e.g., predicting matrix

condition and rank or for least-squares estimate accuracy)

when the measurement vector y is augmented with point-

ing offsets taken in new directions.

To ilhlstrate, this algorithm is applied to the A matrix

which resulted from the Voyager 2 trajectory, as shown

m Fig. 2. Referring to Table 5, one can base the rank

determination of the A matrix on the smallest of the sin-

gular values. For example, choosing 0.1 as a singular value

cutoff resu[ts in precision and computer command mode

parameter selections and matrix conditions that are sum-

marized in Tables 10 and 11. Eliminating parameters 11

and 21 from the precision mode and 1 from the computer

command mode results in reduced matrix condition and

smaller estimation standard deviations for some elements

of the solution vector. In practice, the actual systematic

error estimated values are generally less than 100 mdeg.

Thus, estimation accuracy for some of the remaining pa-

rameters in Table 10 will be a certain percentage of the
estimated values.

Depending on the antenna's frequency band, this may

or may not meet the pointing requirelnents. (A detailed

description of errors will not be covered here.) Estima-

tion errors will always be larger in practice because of

uncertainties in tile measurement vector y, so one may

decide to increase tile singular value cutoff and apply the

subset selection algorithm. Using cutoffs 1.0 for the preci-

sion mode and 0.2 for the computer command mode yields

the results summarized in Tables 12 and 13. To achieve

accuracy comparable to the hypothetical all-sky models,

the parameters to be excluded are 1,7,11, and 21 from

the precision-mode set and 1 and 7 from the computer

command-mode set. It is advised that whenever the fixed

angular encoder error parameters (for example, 7 and 21)

are excluded in the subset selection procedure, their values

should be determined directly, from the pointing offset data

and contributions t.o y s]iould be removed before l,iaking

an estimation.

IV. Summary

This article has described and analyz,_d the least-

squares problem encountered in l]Je I)SN systomat ic l_oint -

ing error modeling process. Specifically investigated is

the relations]tip between rank degeneracy of nloasurenlent

distribution lnatrices and limited-sky distritmtions of t]le

pointing error otfsets. Using a hypothetical all-sky per-

formance index and an SVD analysis, it. is shown that an

acceptable matrix condition of the least-squar,-s prol>h,m

can be obtained by evaluating the poinl ing model regressor

wu'iables with adequate sky' distributions of tho poinling

nleasurements. In addition to nlatrix con,litton, the the-

oretical standard deviations of the least-squares estimate

are used to evaluate accuracy. It is shown through an ex-

alnp]e that redundancy alnong the systellialic error model

regressor variables occurs when dealing with linfited and

sparse data sets. In praclice, rank-degenerate inalrices are

encountered when building models for particular regions of

the sky,, such as along a band of constaill decliimtion.

The key' feature of the analysis presented is its predic-

tive capability. Matrix condition and least-squares esti-

mate accuracy based on measurement distribution may be

predicted before actual pointing calibration activities com-

mence. Tile current lea.st-squares solution method based

on singular-wdue decomposition is also presented. This

method can handle ill-conditioned lneasurenmnt dislribu-

tion matrices encountered in the niodel-building process.

For limited measurenaent sets, it was argued that it. may

be preferred to estimate only obset'val_le paranleters. Sys-

tematically eliminating redundanl parameters will facili-

tate the paraineter selection process and make it consis-

tent.. A recommended subset selection algorithm based

on singular-value decomposition and Qt{ factorization is

illustrated with a Voyager 2 lueasurement set.

V. Future Work

This article has presented an analytical approach using

mat hematical tools to answer fundamental numerical ques-

lions arising from the systematic error-modeling process.

Such general but consisl.ent procedures are needed in the

modeling process because of the many antenna-specific me-

chanical and other practical consideralions encompassed

by' the proMem. Once past this juncture, one niay begin

to address lhe defici,qlcies and look for possible refinenaents

in the estimation process. The lnost obvious is that. of re-

cursive estimation. Methods must be devisod to handle
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data sets spanning many weeks or years and incorporat-

ing many a priori models and model uncertainties into the
estimation algorithms. If and when uncertainties in point-

ing measurements can be accurately modeled, including
those from natural or manmade sources as well as from

antenna-system imperfections, then the algorithm should
also be modified to allow for weighted observations.

All these enhancements must be worked into the

existing modeling software. This package should also en-
able the functional form of the model to change relatively

often. This will allow for the addition of newly discovered
error terms and for enhancements to accommodate new

antenna architectures such as the DSS 13 beam-waveguide
antenna.

Acknowledgments

The author would like to thank R. Riggs for instruction about the DSN sys-

tematic pointing error modeling process. The modeling software developed and

maintained by Riggs for the Goldstone tracking station was used in this study.

Chris Sanelli is acknowledged for implementing and testing the parameter selection

algorithm.

References

[1] P. Stumpff, "Astronomical Pointing Theory for Radio Telescopes," Klein-
Heibacher Berichte, vol. 15, Fornmoldeteshnischon Zentralamt, Darmstadt, West

Germany, pp. 431-437, 1972.

[2] M. L. Meeks, H. A. Ball, and A. B. Hull, "The Pointing Calibration of the

Haystack Antenna," IEEE Transactions on Antennas and Propagation,

vol. AP-16, no. 6, pp. 746-751, November 1968.

[3] R. Stevens, R. L. Riggs, and B. Wood, "Pointing Calibration of the MKIVA DSN
Antennas for Voyager 2 Uranus Encounter Operations Support," TDA Progress

Report _-87, vol. July-September 1986, Jet Propulsion Laboratory, Pasadena,

California, pp. 206-239, November 15, 1986.

[4] C. N. Guiar, F. L. Lansing, and R. Riggs, "Antenna Pointing Systematic Error
Model Derivations," TDA Progress Report 42-88, vol. October-December 1986,

Jet Propulsion Laboratory, Pasadena, California, pp. 36-46, February 15, 1987.

[5] R. E. Hill, "A Modern Control Theory Based Algorithm for Control of the
NASA/JPL 70-Meter Antenna Axis Servos," TDA Progress Report 42-91,

vol. July-September 1987, Jet Propulsion Laboratory, Pasadena, California,

pp. 285-294, November 15, 1987.

[6] C. N. Guiar, R. L. Riggs, R. Stevens, and M. _,Vert, "DSS 14 Antenna Cal-

ibrations for GSSR/VLA Saturn Radar Experiments," TDA Progress Report
t2-93, vol. January-March 1988, Jet Propulsion Laboratory, Pasadena, Califor-

nia, pp. 309-337, May 15, 1988.

[7] C. L. Lawson and R. J. Hanson, Solving Least Squares Problems, Englewood
Cliffs, New Jersey: Prentice-Hall, Inc., 1974.

24



[8] C. N. Guiar, "Using Ridge Regression in Systematic Error Corrections," TDA
Progress Report 42-92, vol. October-December 1987, Jet Propulsion Laboratory,

Pasadena, California, February 15, 1988.

[9] G. H. Golub and C. F. Van Loan, Matriz Computations, Baltimore, Maryland:

The Johns Hopkins University Press, 1989.

[10] G.H. Golub, V. Klema, and G. W. Stewart, Rank Degeneracy and Least-Squares
Problems, Technical Report TR-456, Department of Computer Science, Univer-

sity of Maryland, College Park, Maryland, 1976.

[11] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical

Recipes, Cambridge, England: Cambridge University Press, 1986.

25



Table 1. Systematic pointing error sources and model terms

Error source

Model function

Cross-elevation error Elevation error

Az a colfimation P1 ¢ -

Az encoder fixed offset P2 cos (el) -

Az/el skew P3 sin (el) -

Az axis tilt P4 sin (el) cos (az) -/:'4 sin (az)

Az axis tilt P5 sin (el) sin (az) P5 cos (az)

Som'ce dec b P6 sin (az) P6 sin (el) cos (az)

El c encoder fixed offset - P7

Gravitational flexure - Ps cos (el)

t_esidual refraction - P9 cot (el)

Az encoder scale error P10 (az/360) cos (el) -

Cross-declination error Declination error

tlAa/dec axis skew -Pll sin (dec) -

HA axis tilt P12 sin (HA) sin (dec) P12 cos (tIA)

tlA axis tilt -Pt3 cos (tIA) sin (dec) Hi3 sin (IIA)

HA feed offset -P14 -

Gravitational flexure P15 cos (p)! cos (el) -P15 sin {p) cos (el)

Declination feed offset - PI6

Gravitational flexure P17 sin (p) cos (el) --

Gravitational flexure - -PIs cos (p) cos (el)

Gravitational flexure -P19 sin (el) --

Gravitational flexure - P2o sin (el) (el)

IIA encoder bias P21 cos (dec) --

a Az refers to azinmth angle.

b Dec refers to declination angle.

c El refers to elevation angle.

aliA refers to hour angle.

e Uppercase P refers to parameter value.
l Lowercase p refers to paralecii¢ angle.

Table 2. Applicable parameter sets to DSN 70-m and 34-m
antennas

Table 3. Singular values for all-sky distributions

Pl,(.ci_iOll iiI0de C_(}lll])tlter COllllllalld llll_{tc

Ple¢-isiOll llIO¢le (!Otltl)tll(!l" iNillllllgtll(] ill<tile
3.1.252 3.1.252

1 l 18.108 18.096

7 2 15.785 11.814

8 3 11,811 II .807
] 0.3 12 10.3,t2

9 4
6.161 5.61-t

1 5
,1.1:;1 2.623

12 7
_.925 O.S 19

t3 8
2.G23

t.1 9
C'.ondll i(,u ]mml_.(_'r (', ,udit i,,n numl:.,'r

2t
t 3.0G ,11 ,s0
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Table 4. Computer command mode correlation matrix for all-sky distribution

|:'ar;mmlcr 1 2 3 -t 5 7 S !_

1 1.00 -0.97 -0.5)8 0,00 O.O0 O.(lI) 0.00 O.I J(}

2 - 0.'07 l .(JO 0.92 {I.(l() 0.00 0.00 (I.(l(} 0.(10

3 - [).!)8 ().{)2 l.OlO O.O0 (J.O(.} 0.00 (J.O0 0.0()

4 0.00 ().0(} 0.()0 t.00 0.00 O.(_(I 0.00 O,{)l)

5 O.()(J O.()O O,OU 0.{9{) ] .0() {),( ){) (J.()[) I).l )(J

7 O.O0 0.00 0.00 {).00 0,00 | .1)() -- {).81 0._{( ;

8 0.00 O.O0 O,(JO O.O0 0.00 --0.81 ] ,0() --0.75

c) 0.00 0.(1{) O.O(J (I.( I(J O.I)O ().;_l ; - O. 75 ] .(J(}

Table 5. Singular values for the Voyager 2 data set

})lI'CiSiOll lll_ldC (_'Olllf)llt(!l" Ci)llllll&lld llll_(l__ _

Table 7. Theoretical standard deviations tor the all-sky data

set in millidegrees

Paranmter }'recision mode C_mqmler command m,_de

57.22(; 57.22(;

1 .t ..-',:R) 12. 171 1 0.1 !;

2
10.282 I 0.282

3
5.912 5.012

4
1.483 1.483

0.334 1.315 5 -

O. 199 O. 1 'J{ ) 7 0.17

0.0033 0.0671 8 0.3.',

9 0.06
0.0028

C¢:,nditi_m llltnul)er Cc:,ndlth,n xltulnb,'w l I 0.23

20,438 8.5:3 12 0.08

13 0.21

14 0.20

21 0.22

Table 6. Theoretical standard deviations for the Voyager 2 data

set in millidegrees

P&F;tllle[el" [_l'eCiSlOll ]llOde COlIlp_llel" CI)lllnl&ltd IIl(_l[_

0.82

0.t';1

O.(;'J

0.08

0,0,'_

0.17

0,35

O.OG

Table 8. Singular values for radio source distribution

1 2.19 10.,16 Precision mode Computer c,,mn,and mode

2 -- 10.06

3 -- 3.46 t 5,951 15 .:1 ';2

,t -- 0.20 l 3.(}0_; 13.157

5 -- O. 72 9.885 8. 170

7 3.55 3.55 7.660 7.50 1

8 3.53 3.53 ,1.326 .1.238

9 0.03 0.03 3.550 2.(_03

11 289.,t8 - 2.020 0.82(;

12 0.72 -- 1.156 0.2853

13 1 .S!) - 0.825 --

1-t 252,03 - Condit ion number C'ondit ion number

21 269.20 - 19.335 5-1.600
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Table 9. Theoretical standard deviations for the radio source

data set in millidegrees

Pal'&Itleter PvcciSiOll ltlode Colllpl.tlei' COllllilltlld llll)¢lc

1 0.33 2.45

2 -- 1.68

3 -- 1.96

4 -- 0.13

5 -- 0.14

7 0.,t2 0.,t2

8 1.11 1.11

9 0.36 0.35

11 0.4-I --

12 0.14 -

13 0.44 -

1 ,t 0.49 --

21 0.57 -

Table 10. Reduced parameter standard deviations for the

Voyager 2 data set in millidegrees

Paraineter Precision mode Computer conunand mode

1 2.16 -

2 - 0.29

3 - 0.72

4 - 0.20

5 - 0.72

7 3.55 3.55

8 3.52 3.53

9 0.03 0.03

12 0.72 -

13 1,87 --

14 1.30 --

Table 11. Singular values for reduced Voyager 2 parameter set

Precision lnode Computer coinmand mode

57.226 57.226

12.157 10.282

10.282 8.893

5.221 ,1.8:15

1.,183 1.483

0.319 1.315

0.199 0.199

Condition nmnber Condition xmmber

288 288

Table 12. Reduced parameter standard deviaiions for the

Voyager 2 data set in millidegrees

Pm'ameter Precision mode Computer command mode

2 - 0.29

3 - 0.72

4 -- 0.20

5 -- 0.53

7 -- -

8 0.55 0.55

9 0.03 0.03

12 0.53 -

13 0.19 -

14 0.13 --

Table 13. Singular values for reduced Voyager 2 parameter set

Precision mode Computer command mode

56.955 56.955

8.952 8.893

8.137 8.137

4.900 4.8,t5

1.335 1.335

-- 1.315

Condition number Condition number

,13 ,13
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This article presents a modified output-prediction procedure and a new controller

design based on the predictive control law. Also, a new predictive estimator is
developed to complement the controller and to enhance system performance. The

predictive controller is designed and apt,lied to the tracking control of the Deep

Space Network 70-m antennas. Simulation results show significant improvement in

tracking performance over the linear-q_Jadratic controller and estimator presently
ill use.

I. Introduction

The recent pointing requirements for the X-band

(8.4 GtIz) frequency, 70-m aperture antenna (further de-

noted as the DSS 14 antenna) and the expectation of future

K-band (32 GIIz) capability dictate a need for high-
performance controllers for the azimuth and elevation

drives. This article presents a new design procedure for

a tracking controller that significantly improves antenna

tracking performance. It considers on-axis (or servo)

tracking. In this case, the output is taken on the encoder

(or tachometer) rather than the radio frequency (rf) point-
ing position. The predictive controller uses fllture values

of the stored input command to generate the control sig-
nal. For this reason, the predictive control principle is

considered useful in design of the Deep Space Network

(DSN) antennas' tracking controllers, since the antenna
future tracking command is known when following stars

or spacecraft.

The tracking-control problem is a nontrivial exten-

sion of the regulator problem, widely investigated in the

control literature. Several approaches to the solution of
the tracking problem have been presented in [1-11]. Pre-

dictive controllers are described and analyzed in lnany pa-

pers, among them [1,4,5,6,7,9,10,11]. In most of them,

controlled auto-regressive and integrated moving-average

(CARIMA) models are developed and extensively used for
output prediction and predictive control of linear systems

[1,4,5,6,7,9,10]. State-space description serves a_ a stan-
dard tool for system analysis and design. Besides tool st.an-

dardization, the state-space representation of a predictive

control system provides a unique insight into system prop-

erties, improves system design, and simplifies analysis. In-
terpretations of CARIMA modeling in the state space are

provided by [1,4,11].

This article presents a state-space description of the

output-prediction procedure and a new controller design

based on the predictive control law. A new input-reference

scheme that uses the input-reference horizon is inl.roduced.

Thus, the increment of the control signal is determined
with respect to the input horizon rather than to the last
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valueoftheinput.Also,theintroducedweightingmatrix
includesa forgettingfactor. Bothfeaturessignificantly
improvesystemperformance.

Theusefulnessoftilepredictivecontrollawdependson
the availabilityof theplant-statevariablesfor measure-
ment.Typically,notall statevariablescanbemeasured,
althoughforanobservablesystemtheycallbeestimated.
In this article,a predictiveestimatoris developedasa
complementto thepredictivecontrollerto speedtheesti-
mationprocessandenhancesystemperformance.

Usingttleintroducedpredictivecontrolandestimation
laws,thestate-spacepredictivecontrollerisdesignedand
appliedto thetrackingcontroloftheDSN70-mantennas.
Simulationresultsshowsignificantimprovementin track-
ingperformanceoverthe linear-quadratic(LQ)controller
andestimatorpresentlyinuse.Therobustnessto param-
etervariationandthedisturbance-suppressionproperties
arefoundto befairlygoodfor theconsideredpredictive
controlsystem.

II. Output Prediction for a Linear System

A plant with nu inputs and ny outputs is considered.

Its linear state-space model consists of n states

x(i+ 1) = Ax(i) + Bu(i), y(i) = Cx(i) + Du(i) (1)

wherexER n,uER "u,and yER "u. The task is to pre-

dict output y for NY steps ahead, given projected input

u for NU steps ahead. The integer NY is the length of

the output horizon, while NU is the length of the input

horizon. For casual systems, the length of the input hori-
zon does not exceed the length of the output horizon, i.e.,
NU < NY.

Before determining the predicted output, the input and

output sequences (or horizons) are introduced. Three
types of input sequences are defined. First is the input

horizon U(i), consisting of the input from an instant i up
to NU - 1 steps ahead

uT(i) = [uT(0), uT(1),..., uT(NU - 1)] (2)

where ui(k) is the predicted input at instant i with k steps

ahead. The input horizon U(i - 1) is a horizon predicted
at the previous time instant. Note that it is not a delayed

prediction at instant i, i.e., ui-l(k) # ui(k - 1).

The second sequence, reference-input horizon U_(i), is

identical to the previous input horizon U(i- 1) for the

first NR time instants and is constant for the remaining
NU - NR instants

f //i-- 1 (_:)

t ui-l(NR)

for k = 1 ..... N R

for k= NR + I ..... NU

(a)

where the integer NR < NU is the lenglh of the reference
horizon. Thus,

u,,(i) = Eu(i- l) (4)

where

E

E2

N/t times

and I,, is the identity matrix of diinension nu.

The last input sequence, input-incremelit horizon

AU(i), is defined with respect to reference horizon U_(i)
as follows:

AU(i) = U(i) - U,(i) = U(i) - EU(i- 1) (6)

Sequences U(i), U(i- 1), U_(i), and AU(i) are shown in

Fig. 1.

Two output sequences are introduced: output horizon
Y

Y(i) T = [yT(1), yT(2) .... ,yT(Ny)] (7)

i

and predicted-output horizon Y

7T(i) = [y_(1),_Y(2),... ,_T(Ny)] (8)

The latter is an output of the system with reference hori-
zon Ur as an input. Components yi(k) and _i(k) are the

output and predicted output, respectively, at, instant, i with

k steps ahead. Note that although the sy,st,em output at, in-

stant i with k steps ahead is equal to the output at, instant
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i + l with k - 1 steps ahead, yi(k) = yi+l(k - l) = y(i + I),
I < k, the same is not true for the predicted output. The

prediction at instant i with k steps ahead is not the same

as the prediction at instant i + l with k - l steps ahead.

Tile output horizon is obtained from the plant model,

Eq. (1), for k = 1 .... , NY:

y(i + k) = CAkz(i) + CAk-lBu(i) + ...

+ CBu(i + k -- 1) (9)

Predicted output _i(k) is defined a.s a system response
to the reference-horizon input Ur(i). Thus, for k =

1,... ,NY

_i(k)=CAkx(i)+CAk-lBur(1)+...+CBu_(k) (10)

and Eq. (9) is now

y(i + k) = y(k) + CAk-lBAui(O) +...

+ (CAk-NR-1B + .. + CB)Aui(NR - 1)

(11)

Denoting the Markovian matrix

gl 0 ... 0
g2 gl ... 0

G = ............................... (12)
ffNU 9NU- 1 • • • gl

gNY gNY-1 •.. gNY-NU+I

where gi = CA i-lB is the ith Markov parameter, one

obtains the output horizon from Eq. (11):

Y(i) = Y(i) + GAU(i) (13)

Predicted-output horizon Y, necessary to determine Y in
Eq. (13), is determined from Eq. (10):

Y(i) = H¢(i) + GU_(i) = Hx(i) + GEU(i - 1)

= gx(i) + FU(i - 1) (14)

where

F = GE, H = ONy-1A (15)

E is as given by Eq. (5), and

ONy- 1 _ [CT(CA) T... (CA NY-1)T]T (16)

Tile input-increment horizon depends on the length of

the reference horizon. In particular, for NR = 1, one

obtains Aui(k) = ui(k) - ui - 1(1), k = 1,...,NU. This

is the case of the generalized predictive control of [5], where

the control increments are defined with respect to the last

input command. For NR = NU, one obtains E = I

and AU(i) = U(i) - U(i- 1). In this case, the control
increment is defined with respect to the previous control

over the whole length of the input horizon. If the input
increment is determined with respect to the zero-reference

input, the input-increment horizon is equal to the input

horizon, AU(i) = U(i), and for this case, NR = 0. Signal

sequences U(i), U(i- 1), U,.(i), and AU(i) are shown in

Fig. 1 for NR = 0, 1, and NU and for a generic NR. Note
also that for NR = NU one obtains F = G, for NR = 1

one obtains F T = [gT, gT +g[,... ,gT +.. "+g_v], and for

NR = 0 one obtains F = 0. In the latter case, the output

is predicted from the system state only, while otherwise it

is predicted from the state and the system input as well.

III. Predictive Control

The basic task for a predictive controller is to assure

that for the bounded input the future output Y will closely

follow the input command Yo within the output horizon
NY:

rot(i) T 7"= yo (2),..., yo (NY)] (17)

where yoi(k) is the command signal at instant i with k
steps ahead. Thus, the task is to minimize the plant track-

ing error while the input remains bounded:

¢(i) = Yo(i) - Y(i) (18)

cT(i) = [¢T(1),eT(2),... ,¢T(Ny)] (19)

where Ci(k) is the error at instant i with k steps ahead.

The tracking error within the output horizon, as well as
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the restrictions on the input within the input horizon, are
included in performance index J

J = tr (cT(i)Qc(i) + AuT(i)RAU(i)) (20)

where tr(.) denotes the trace of a square matrix; Q and

R are symmetric, positive, definite matrices; Q is the

tracking-error weighting matrix; and R is the control-effort

weighting matrix.

The necessary condition for the optimum, OJ/OAU =

0, applied to Eq. (20) and using Eq. (13), yields

where

AU(i) = K(Yo(i) - "_(i)) = I(-((i) (21)

K = (GTQG + R)-IGTQ (22)

and _'(i) --- Yo(i)- "_(i) is the predicted output error. The

resulting control increment AU(i) covers the whole input-
horizon NU; for control purposes, however, only the first

component (the current control increment) is used. Let k
denote the first nu rows of K:

k=eK, e=[I,_u 0 0...0] (23)

Then the control increment at instant i is

Au(i) = k(Vo(i)- 7(i)) = k-_(i) (24)

and the control input is obtained from Eq. (6)

u(i) = u(i - 1) + Au(i) (25)

Combining Eqs. (24), (25), (14), (15), and (16), one ob-
tains the control command at moment i:

u(i) = u(i - 1) + k (Yo(i) - 7(i))

= u(i- 1) + kYo(i) - kHx(i) - kFU(i- 1)

and with u(i - 1) = eU(i- 1), the above equation yields

u(i) = kYo(i) - kHx(i) + (e - kF)U(i - 1) (26)

Thus, the command u(i) depends on the previous input

horizon U(i- 1), on the actual state x(i), and on the

control command Yo(i) up to NY steps ahead.

The closed-loop system equations are obtained by com-

bining the plant equation, Eq. (1), with the controller

equation, Eq. (26), and by introducing the new state vari-
able Uo(i) such that

Uo(i + 1) = U(i) (27)

In this way, one obtains

x(i + 1) = (A - BkH)x(i) + B(e - kF)Uo(i) + BkYo(i)

Uo(i + 1) = -KHx(i) + (IN -- Kr)uo(i) + KYo(i)

= cx(i) (28)

and N = NU x nu. With the new state variable Z T =

[xT, UoT], the closed-loop equations are

where

z(i + 1) = A_z(i) + BcYo(i), y(i) = Ccz(i) (29)

[ A - BkH B(e - kF) ]Ac = [ -KH IN -- KFF

(In -- BK ONY-1)A B(e - ]cF)]= -KH IN - KF J (30)

B T =[BkK] T, C_=[C O] (31)

One can see that control command u(i) is now

u(i) = kYo(i) + [-kH e - kF]z(i) (32)

fully recovered from the current state of the system and
from the input command.

The block diagram for the closed-loop system,
Eqs. (29)-(31), is presented in Fig. 2. The system consists

of the plant, the predictor (PRD), the controller (CO),
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andthecommandhorizongenerator(CHG).Thepredic-
torstructureisshownin Fig.3(a)andthecommandhori-
zongeneratorin Fig.3(b).Thestate-spacerepresentation
ofthecommandhorizongeneratoris

Zr h -_-

Cr h

0 I 0 ... 0

, Brh =

 I001Ill0 I ... 0|

............ [ , Drh =

/0"0 ".i.")/
tO 0 ... 03

(33)

where I is an identity matrix of order ny, and Arh and Brh

have NY - 1 rows, while C,.h and D,.h have NY columns.

The weighting matrices R and Q are the tuning param-

eters of the optimal design (for example, see [2,12]). That
means they are to be adjusted until satisfactory results

are obtained. Although they are not "active" in the op-

timal design solution, their choice significantly influences

the performance and stability of the system. A general
procedure for a reasonable choice of the weighting matri-

ces is not yet known. In this article, a simplified procedure

is developed. The weighting matrices obtained from this
procedure significantly improve system performance, i.e.,

tracking error.

A diagonal matrix R = pI has been chosen as a control

weighting matrix, where p > 0 is a scalar, and tracking-

error weighting matrix Q has the following structure:

Q = diag(q,o_q,o_eq,...,aNY-tq) (34)

The diagonal component qo_k-lq is tile weight of the error

of ¢i(k), the kth component of e(i). The last weight is time

dependent; the weight of the output error at the (i + k)th
time instant is a k-1. The scalar c_ is called a forgetting

factor. The most recent output is given a unit weight, and

the future output penalized (in fact, awarded, as will be
shown later) exponentially. With this arrangement, the

choice of R and Q reduces to the choice of parameters p,

or, and q, as is illustrated in Section V.B.

There are two sources of system disturbances: mea-

surement noise Vy(i) (or v::(i) when measuring all state

variables) and input disturbances vu(i) (Fig. 2). The dis-
turbances are included in the closed-loop system model,

with the triple (A¢, Bu, C¢) for the output noise and the

triple (A¢, B_,, C¢) for the input disturbances, where

[ A - BkH ]
By = { -KH ]'

Their impact on system performance is studied in Sec-

tion V.D. For high-frequency disturbances, the distur-

bance-rejection properties of the system significantly im-

prove when the lowpass filter (LPF) is applied as in

Fig. 4(a). The plant states related to the command sig-
nal are obtained from the plant model (PM), and they are

extracted from the measured states. The resulting signal
passes through a lowpass filter and is added to the states

previously extracted. The filter is shown in Fig. 4(b).

IV. Predictive Estimation

Implementation of the predictive controller depends on

the availability of the plant states for measurement. Often,
these parameters are not avaiIable. An LQ estimator (for

example, see [2,13]) that estimates plant state from its

output can be considered as a solution to the problem.
Its action, however, is too slow for the predictive control

system, and the predictive scheme is included in the design

of the estimator. Thus, a new estimator with dynamic

characteristics comparable to the predictive controller is
developed.

The estimate &(i) of the plant state x(i) is determined
from the input and output horizons as follows. From

Eq. (1), one obtains

k

CA_x(i) = y(i + k) - E CAJ-aBu(i + k- j),
j=l

or

k = 0, 1, 2 .... , NY

ONyX(i) _-- _e(i) -- GeU(_ ) (35)

where
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and H, G, and Y are given in Eqs. (15), (12), and (7),

respectively. Variable Ye is an augmented output hori-

zon composed of the current output y(i) and the output

horizon Y(i). From Eq. (35), the estimate _:(i) of x(i) is

determined such that for a symmetric, positive, weighting

matrix Qe the estimation index

Je = l]Hex(i) - He&(i)ll2Qe (37)

is minimal, obtaining

_(i) = O+r(Y,(i) - G,U(i)) (38)

where O+r = (O_gQe ONY)-IOTyQ,. Note that the

state estimate is determined from input and output hori-

zons, while input and output signals, rather than horizons,
are available for estimation. The input horizon is available,

however, right after the controller output (Fig. 2). Output

horizon Y(i) is not available directly; nevertheless, it can

be obtained from the plant model as follows:

X(i+ 1) = AX(i) + BU(i), Y(i) = CX(i) + DU(i)

(39)

The estimator is shown in Fig. 5(a). Thus, the plant

state is estimated from its output and the input horizon.

This scheme is similar to the LQ estimation scheme, since

it uses the available input and output signals and the plant
model to generate the estimate. The block diagram of

the predictive control system with the predictive estimator

(EST) is shown in Fig. 6.

Unlike the LQ estimator, the predictive estimator does

not have filtering properties, since its output _?(i) is pro-

portional to a noisy signal y(i). This drawback can be

removed as follows. Given the plant model output y,_(i)

the output error Ev(i ) = y(i) - yn(i) is filtered by a proper

filter, obtaining the filtered error ev! (i). In most cases, the
output error is a high-frequency noise; hence, a lowpass fil-

ter is applied. The filtered output is obtained by adding a

filtered error to the nominal output yf(i) = y,(i) +evf(i ).
In this way, most of the noise power is removed from the

output signal, while the basic properties of the signal re-
main untouched. The estimator with a filter is shown in

Fig. 5(b). The filter action will be illustrated in the next
section.

V. Predictive Control and Estimation for the

DSS 14 Antenna

Performances of the predictive controller and estimator

are checked through tracking simulations of the DSS 14
National Aeronautics and Space Administration (NASA)/

Jet Propulsion Laboratory (JPL) 70-meter DSN antennas.

The existing control scheme for the DSN 70-in antennas

[14] is based on an LQ regulator design with the integral

action as presented in [15-20]. The LQ control system is
shown in Fig. 7, in which the plant output is augmented

by the addition of the output integrals in order to ensure

the zero mean value of the constant-rate tracking error.
The LQ controller is designed for this augmented plant

with a constant tracking command. This assumption can

be a significant source of tracking error. A controller de-

signed for the constant tracking command can result in
insufficient antenna performance, especially for relatively

fast commands or varying rate commands. In this section,

the performance of the predictive controller is compared

with that of the LQ controller in the tracking environment.

A. Plant Model

The state-space model of the DSS 14 antenna [14] is a

four-state model with position rate u as an input and po-

sition rate y as an output. Its discrete-time representation

(Aa, Be, Ca), with the sampling period At = 0.05 sec, is

obtained from the continuous-time representation in [2]:

A d =

0.0468 0 0 i ]

0 0.5443 0.3474
0 -0.3474 0.5443

0 0 0 0.8872

0.0113]

0.0025[
Bd= 0.03991' Ca = [0.7239 9.2260 0 1.1421]

!
0.0538J

The system (Ad, Bd, Ca) is augmented. As a result, its

output consists of the position rate, the angular position,
and the integral of the position. The augmented system

is shown in Fig. 8. Denoting xa the state of the system

(Ad, Be, Ca), and xpo and Xipo the position and the integral
of the position, respectively, one obtains from Fig. 8

X#,o(i + 1) = Xipo(i) + Atxpo(i)

Xpo(i + 1) = Xpo(i) + AtCdxa(i)

xd(i + 1) = Adxd(i) + Bau(i)
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With the plant-state variable x T = [xivo,Xpo, XTd], the

triple (A, B,C) is the resulting plant-state space repre-
sentation

0] [00][i001A= 0 1 AtCd , B= , C= 1 0
0 0 Aa Bd 0 Cd

used in simulations presented below.

B. Weighting Matrices and Input and Output Horizons

For simulation purposes, a piecewise-linear profile of the

position command is chosen, with linear increase followed

by linear decrease and the final constant value (Fig. 9).
The command rate is 4 mdeg/sec, which is a typical si-

dereal tracking rate. The shape of the command is more

dramatic than the real tracking command, but it has been

chosen to emphasize the tracking possibilities of the pre-
dictive controller. A more realistic tracking command will
be used later in this article.

In order to perform a series of sinmlations, weighting

matrices R and Q are chosen such that the output er-
ror is small while the control effort is maintained within

reasonable limits. For diagonal-control weighting matrix

R = pI, parameter p = 0.01 is chosen. Tracking-error

weighting matrix Q is as in Eq. (34). Component q is in

the form q = diag(qi,%,qr). It represents the weight of

the integral, position, and rate components of the output.
The following choices of weight are recommended from a

series of simulations tracking the command as in Fig. 9: for

the integral-of-the-position signal, qi = 10; for the position

signal, qp = 1; and for the rate signal, qr = 0.1. Coeffi-
cient a k-1 in the weighting matrix is the weight of the

kth error component in the output horizon. Simulations

have been performed in order to determine the value of

parameter a. The plot of the Euclidean norm of tracking

error [[y- Yol[_ versus o_ is shown in Fig. 10 both for differ-

ent lengths of output horizon and for lengths of input and
reference horizon equal to lengths of output horizon. The

plot shows the minimal tracking error obtained for a = 6.2
and NY = NU = NR = 6. For NR = NU = NY, Fig. 11

plots the values of a for which the tracking error is min-

imal. The figure shows that, for horizons that are long

enough, the forgetting factor is close to 1. Thus, in this
case, the time weighting does not significantly improve the

tracking error. However, for short horizons, the proper

choice of forgetting factor is a critical factor that mini-

mizes the error dramatically. In prediction, the forgetting

factor is greater than one (thus, "reminding factor" could

he an adequate name for it). This is in contrast to the
forgetting factor value in estimation procedures such as in

[12], where the factor is smaller than one. This difference

occurs due to opposite time directions; in estimation, the

past values of signal are weighted, while in prediction the
future values of signal are processed.

From simulations, the impact of the length of input-

reference horizon NR and output horizon NY on the

tracking error is determined. The results are plotted in

Fig. 12. One can see that for NR > n/2 and NY > 2n

(where n = 6 is the number of plant-state variables), the

performance error is close to the minimal one.

C. Antenna Performance

The performance of the DSS 14 antenna with the track-

ing command as shown in Fig. 9 has been evaluated for

the parameters recommended above. The following pa-
rameters for the predictive controller were chosen: NR =

NU = NY = n = 6 and weighting matrices with p = 0.01,

q = diag(10, 1,0.1), and a = 6.2. The reference signal
and the position of the antenna with the predictive con-
troller for a = 6.2, for a = 1, and for the antenna with

the LQ controller are shown in Fig. 9. The prediction er-
rors and control input for the above three cases (a = 6.2,

a = 1, and LQ controller) are shown in Figs. 13 and 14.
The figures show better performance by the predictive con-

trollers than by the proposed LQ controller with compara-

ble control effort. Also, predictive-controller performance

with time-weighted output error (o_ > 1) is better than

predictive-controller performance without time weighting

(o_ = 1).

The minimum of tracking error for output horizon

NY = 4 is obtained for a = 6.4. These two parameters are

used in further simulations, since it is reasonable to have

the length of the output horizon as small as possible; the

dimension of the controller as well as the complexity of the

system depend on NY. The step-response and frequency-

response plots of the closed-loop system with a predictive
controller and an LQ controller are compared in Figs. 15

and 16. Figure 15 shows that the settling time and over-

shoot for the system with the predictive controller, with

NY = NU = NR = 4 and a = 6.4, are significantly re-

duced from the system with the LQ controller. Similarly,

from Fig. 16, one can see the tracking performance is im-
proved; the magnitude of the closed-loop transfer function

is equal to 1 over a wider bandwidth. Also, roll-off rate is

improved for the system with a predictive controller (with
NY = NU = NR = 4 and c_ = 6.4, as well as with

NY = NU = NR = 6 and a = 5) when compared to the

system with an LQ controller.

The piecewise constant-rate command, as well as the
unit step command, are dramatic scenarios for the DSS 14
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antenna and have been introduced in order to present dy-

namic possibilities of the predictive control. In order to

meet the typical working requirements for the antenna,

the raised-cosine command is introduced, as in Fig. 17

(solid line). This kind of command is close to the real ele-

vation or azimuth trajectory of the antenna (consean-like
tracking). The plot of the output of the predictive con-

trol system overlaps the plot of the command, while the

output of the LQ control system is plotted by a dashed

line (Fig. 17). The tracking error, the difference between

the output and the command, is plotted in Fig. 18(a) for
the LQ control system and in Fig. 18(b) for the predictive

control system. For the LQ control system, the error is on
the order of 10 -4 , while the error for the predictive control

system is on the order of 10 -7 . In both cases, however, the

control effort is almost the same (Fig. 19).

D. Robustness and Disturbance Suppression

The robustness of the closed-loop system to the plant-

parameter variations is checked as follows. The plant poles
are randomly perturbed within 20 percent margin, and

the error in the step-command tracking is simulated for

500 random samples. The results of the simulations are

presented in Fig. 20. On the average, tracking error has

changed about 5 percent in comparison with the nominal
plant error, and the maximal tracking error is 66 percent

larger than the nominal plant error. The step and fre-

quency responses of the closed-loop system for the nomi-

nal plant and for the plant model deviated 20 percent from

the nominal, as is shown in Figs. 21 and 22. Both plots

show good performance and robustness of the system.

Two sources of disturbances of the antenna are stud-

ied: the input disturbances and output disturbances (mea-
surement noise). The input-disturbance transfer functions

(from vu to y) and output-disturbance transfer functions

(from v, to y) are shown in Fig. 23, the latter one for both
position- and rate-measurement noise. One can see from

Fig. 23 that the input disturbances are significantly sup-
pressed, while the position-measurement noise is amplified

over certain frequency ranges.

The nature of the antenna disturbances is not sat-

isfactorily known, and here their general properties are

outlined. Input disturbances, such as wind or thermal

forces, are low-frequency signals. Measurement noise, on

the other hand, is a high-frequency signal (high in compar-

ison to the antenna fundamental frequency, which is less
than 1 tIz). Therefore, for testing purposes, white-noise

input disturbances and high-frequency measurement noise

with frequency components over 3 Ilz are applied. The sys-

tem response due to different signal-to-noise (S/N) ratios

is simulated. The results are compared in Fig. 24, where

good disturbance-suppression properties of the system are

observed. The impact of the input noise is much smaller
than that of measurement noise. This feature can be ex-

plained with the lowpass-filtering property of the plant;

the noise is filtered before entering the predictor. The

tracking error and plant input for input noise with S/N
ratio = 10 and for measurement noise with S/N ratio =

100 are shown in Figs. 25 and 26. The effect of the mea-

surement noise is reduced by applying a filter, as in Fig. 4.

The transfer-function plots from the output disturbances
to the system output for the system with the filter are

shown in Fig. 27. The tracking error due to measurement

noise is reduced significantly, even for white noise (Fig. 28).

E, Predictive Estimator

Predictive-estimator performance is compared to the
performance of the LQ estimator. The plant model

(Ad, Ba, Ca) has been used for simulations, with unit-

step input and zero-initial conditions. For estimation

purposes, the initial conditions have been changed to

[0.1 0.1 0.1 0.1] w. The estimation results are shown in
Fig. 29. The LQ estimator needs approximately 2 sec-

onds to reach an acceptable estimation error, while the

predictive estimator determines the states in virtually no

time. In the case of noisy output, with S/N ratio = 100,
one obtains estimation errors for the LQ and predictive

estimators (with and without filter) as in Fig. 30. The

unfiltered predictive estimate in Fig. 30(b) would make

the estimator useless for prediction purposes. However,

these errors are reduced by a filter, as in Fig. 30(c). The
maximum error of the predictive estimator with a filter is

much smaller than the residual error of the LQ estimator

even after 4 seconds in action. Finally, simulations indi-

cate that the identity-weighting matrix (Q_ = I) is the
optimal choice for estimation purposes.

VI. Conclusions

In this article, a modified state-space predictive con-

troller is introduced, and a predictive estimator is pre-

sented to complement the design of a predictive-control

law. This approach has been used for the design of the
tracking controllers of the NASA/JPL 70-m antennas.

Several tracking scenarios have been introduced (step in-

put, constant-rate rise and fall, raised-cosine trajectory)
to test the tracking behavior of the predictive controller.

Significant improvement of performance for presented sce-
narios has been observed. It has been shown that the time

for the predictive estimator to reach an acceptable level

of estimation error is much smaller than that for the LQ

estimator. Also, a wider bandwidth and improved roll-off
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rate is obtained for the predictive closed-loop system in

comparison with the LQ regulator system. The predictive

control system is robust to the plant-parameter variations.

Shifts of plant poles of 20 percent of their nominal values

keep the tracking performance good; the tracking error is
on the same order as for a nominal plant. Disturbance-

suppression properties of a predictive control system also
have been simulated and found to be good for input distur-
bances and measurement noise if the measurement-noise

spectrum is higher than the plant-fundamental frequency.

The system disturbance-suppression properties can be en-
hanced if the disturbance filter is included in the system.
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The results of a study to determine the feasibility of using array feed techniques
to improve the performance of the 70-m antenna at 32 GHz are presented. Chang-

ing from 8.4 GHz to 32 Gttz has the potential of increasing the gain by 11.6 dB,
but recent measurements indicate that additionM losses of from 3 to 7 dB occur

at 32 GHz, depending on the elevation angle. Array feeds have been proposed to

recover some of the losses by compensating for surface distortions that contribute
to these losses. Results for both surface distortion compensation and pointing error

correction are discussed. These initial studies, however, had one significant restric-
tion: The mechanical finite-element model was used to characterize the surface

distortions, not the measured distortions from three-angle holography data, which

would be more representative of the actual antenna. Further work is required to
provide for a more accurate estimate of performance that utilizes holography data

and, in particular, one that evaluates the performance in the focal plane region of
the antenna.

I. Introduction

To achieve a significant performance improvement from
the Deep Space Network (DSN), it has been proposed that

the operating frequency be increased to 32 GHz. Currently

the maximum operating frequency for the 70-m antennas

is 8.4 GHz, and these ground antennas were designed to
operate efficiently up to this frequency. Assuming that

both the spacecraft and ground antennas have the same

efficiencies at both frequencies, a performance improve-

ment of 11.6 dB could be expected by changing to 32 GHz.
ttowever, measurements performed on the 70-m antenna

by Gatti [1] at 32 GHz indicated that losses of 4.6 dB
were observed at the rigging angle. The rigging angle is

the antenna elevation angle at which the antenna surface

shape has been adjusted to minimize losses. Compared

to 1.5 dB at 8.4 GHz I2], this represents a reduction in

potential performance by 3.1 dB at the rigging angle.

The 32-GHz measurements also indicated that at an

elevation angle of 15 deg the losses were 8.8 dB, an in-

crease of 4.2 dB over the 4.6 dB measured at the rigging

angle. At 8.4 GHz the increase in losses over the range of
operating elevation angles is under 0.3 dB. The additional

losses measured at 32 GHz are a significant part of the

potential performance improvement that is to be gained

by going to the higher frequency and must be recovered

if moving to the higher frequency is to be justified. The

work covered by this article analyzes one method that has

been proposed to recover a portion of these losses.
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Some of these losses are a function of the antenna eleva-

tion angle and are due to gravitationally induced reflector
surface errors. The surface errors cause distortions in the

antenna focal plane field distributions, which are not cou-
pled efficiently into the antenna feed. It has been proposed

that an array feed be used to sample the distorted focal

plane fields. By proper weighting of the contributions from

each array element, the lost performance could then be re-

covered. This concept would be directed toward recovering
a significant portion of the 4.2-dB gravitationally induced
surface distortion loss.

A second problem of operating at 32 GHz is the reduc-
tion in the antenna pattern beamwidth. The one-sigma

pointing accuracy of the 70-m antenna is presently on the

order of 0.003 deg. At 32 GHz a pointing error of this

magnitude can produce a loss of 1.75 dB. Again, the use

of an array feed has been proposed to recover the point-

ing losses. Blank and Imbriale [3] have analyzed the case
for an array feed used with a single distorted parabolic

reflector, presenting results covering both distortion com-

pensation and correction for pointing errors. This article

extends this work to cover dual-shaped reflector antennas
typical of the 70-m antennas used in the DSN.

II. Analytical Approach

The antenna that is the subject of this study is the

70-m antenna at DSS 14 (Fig. 1). The antenna has opti-
mally shaped reflector surfaces to maximize efficiency. The

actual antenna has an offset feed horn and an asymmetric

subreflector design to facilitate horn switching. However,

to simplify the study, only a non-offset symmetrical ge-

ometry was analyzed. Figure 2 shows the layout of the
feed horn array, which is located in the focal plane of the

antenna. The horns are positioned in a triangular lattice

consisting of four rings of elements, the outer boundaries
of each ring being hexagonal in shape. This allows the

analysis to evaluate different-sized arrays: using one ring
with one element, two rings with seven elements, three

rings with 19 elements, and four rings with 37 elements.
The coordinate system convention used is that the z axis

is along the direction in which the antenna is pointed and

the elevation axis is normal to the plane containing the y

and z axes, with positive y pointing upward.

To determine the maximum performance that can be

achieved with an optimally excited array-fed antenna sys-

tem, the conjugate weighting method is used [3], as de-
scribed in the following procedure. The antenna system

far field at a common observation point is calculated for

each horn in the array feed. Next, each feed horn excita-

tion is set equal to tile conjugate value of tile correspond-

ing far-field value at the common observation point. This

in effect weights each far-field point by its complex conju-

gate. Then the weighted far-field values are summed and

normalized, as given by

and

am _-

4_ (K_=I ]EK]2) 2 (1)

lfo2'_forr
"r • eJkR

P* = r/ If(0'¢) EK
K=I

where

EK = the antenna complex far-field vector associ-
ated with the Kth horn

k = wave number

f(0,¢) = field pattern of array horn (asslunes no nm-
tual coupling)

r g = array horn position vector ill focal plane

/_ = unit vector in direction of observation point

O, ¢ = spherical coordinates of observation point

N = number of horns in array feed

r/= free-space impedance

with G being an estimate of the performance that can be

expected from an antenna with distorted surfaces using an
array feed to compensate for the errors. To simplify the

calculation and to get the best estimate, the direction of
the observation point was selected to be in the direction

of the pattern peak when only the center element is used.

A finite-element mechanical model [4], identified as
model J, is used to describe the antenna geometry and

surface shape that results from gravity loading of the an-

tenna at tile various elevation angles considered. The er-

rors in the surface shape and antenna geometry were sup-
plied to this task in the form of y-gravity and z-gravity

load-interpolating coefficients, independent of tile eleva-

tion angle. To determine the errors at a given elevation

angle, the following generic interpolating fimction is used:

P = t=',[sin(rig) - sin(elev)] + Pv [cos(rig)

- cos(etev)] + coast (3)
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where rig is the rigging angle and elev is the elevation an-

gle of interest, Pz and P_ are z and y gravity coefficients,
and const allows the use of a constant term where an error

term is not zero at the rigging angle. Each antenna error,

such as a subreflector displacement or movement of a re-

flector surface point, is described by a three-component-

vector set of Pz and Pp. Using the above expression, the
three vector components of a given error P can be cal-

culated as a function of elevation angle. The mechanical

model used assumes that the gravity-induced errors or dis-

tortions are symmetrical with respect to the vertical axis

(y axis). Therefore, there are no coefficients for subreflec-
tor displacements or antenna beam boresight movements
in the x direction.

The finite-element mechanical model defines the dis-

torted reflector shape in terms of a vector V(u, v, w), which

defines a point on the distorted surface relative to a cor-

responding reference point on a perfect reflector. The an-

tenna pattern analysis program requires that the surface
errors be defined by an axial or z-directed displacement

relative to a perfect reflector surface. Figure 3 illustrates
the method used to derive the axial term. The vector

V(u, v, w) is defined relative to the point (X0, Y0, Z0) on
the undistorted main reflector surface. The values of X0

and Y0 are used to calculate Z0, in this case on the sur-

face of a shaped main reflector. This point, along with

vector V(u, v, w), defines a point on the distorted surface

(X1, Y1, Z1). The value of Z2 is calculated on the surface
of the shaped main reflector at (X1,Y1). The difference,

Dz (z), between points (X1, Y1, Z1) and (X1, Y1, Z2) defines
the axial surface error term.

Since the analysis program needs the distorted sur-

face defined at points other than those in the table of

(X1, YI, D_(z)), an interpolation function is required. A
local interpolating scheme recommended in [5] was se-
lected. The surface of the reflector is subdivided into

a number of regions approximately equal to the num-

ber of surface panels used on the 70-m antenna. A two-

dimensional quadratic function is then best-fitted with up

to 16 points from the error table, the points selected be-

ing closest to the center of the interpolating region. Fewer
than 16 points might be used if the program determines
that some of the points are too remote from a given region.

The surface error interpolating function is of the form

D_ = al + a2z + a3y + a4x _ + abxy + a6y 2 (4)

The procedure used in the analysis is shown in Fig. 4.

The gravity load interpolating coefficient table for the re-

flector, supplied by R. Levy, is the input for the DIST-

RAW program, which computes the actual surface dis-

tortions for a given elevation angle. The output of the

DIST-RAW program is entered into the DIST-COE pro-

gram to compute the two-dimensional local interpolating
coefficients in Eq. (4) that define the surface errors for

the scattering calculation program. A second set of grav-

ity load interpolation coefficients, describing the motion of
the subreflector and the antenna beam boresight location,

is entered into the RUNGEN program, which calculates

the subrefleetor and boresight location for the specified el-

evation angle, then calculates the geometry between the
reflector surfaces and the array feeds, and finally gener-

ates a run stream for calculating the antenna system far-

field pattern for each of the array feeds. The horn pat-

terns, the table of data for the undistorted surfaces, and

the output of the DIST-COE and RUNGEN programs

are entered into the scattering program, and the scatter-

ing program is run once for each of the array feed horns.

The GTD/Jacobi-Bessel scattering program is used. The

output of each run of the scattering program, along with
the horn pattern, is entered into the GAIN-EFF program,

which evaluates Eqs. (1) and (2).

III. Optimum Antenna Configuration

To achieve the most improvement and maximize the ef-

fectiveness of the array feed in compensating for surface
distortions, the subreflector position was adjusted analyt-

ically to provide maximum gain at two representative an-
tenna elevation angles, using the calculated pattern for a

single standard 22-dB horn. (This capability currently ex-

ists, where the DSN antenna subreflectors are moved to

compensate for gravity-induced deflections, using a simple

elevation-dependent algorithm.) Adjustments were made
both vertically and along the antenna axis. At each subre-

flector position, the gain was calculated in the direction of

the predicted boresight angle associated with the selected

elevation angle. Using the subreflector adjustments for el-
evation angles of 15 and 75 deg, a set of gravity coefficients

for the Levy interpolation function was derived:

For z-axis movements

For y-axis movements

Py = 0.041850 in.

Pz = -0.941735 in.

P_ = -2.579083 in.

Pz = -0.545444 in.

The best boresight location was found to be very close

to those predicted by Levy's model J, and therefore his in-

terpolation function coefficients are used for the boresight

predictions. The coefficients used are:
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Main reflector rotation Pu = -1852.8 see
about x axis

P_ = 0.3 see

Main reflector translation Pu = 1332.7 see
in y direction

P_ = 7.0 see

The effect of the subreflector translation on the antenna

boresight location is not defined in terms of gravity in-

terpolation coefficients. Instead, the following expression

supplied by Levy is used:

B = 0.0374 Yt deg/in, about x axis (5)

where Yt is the total subreflector motion in the y direc-

tion and B is the boresight shift contribution due to the
subreflector.

In the analysis that follows, it is assumed that the sur-
face errors are strictly due to time-invariant distortions

caused by gravitational loads. Any losses due to small-

scale surface errors are not accounted for, since these errors

are not predicted by the mechanical model. Even if the
small-scale surface errors could be predicted, they would

not be included because this would require an array with a
very large number of unrealizably small elements. In mea-
surements made on the 70-m antenna at 32 GHz and at a

rigging angle of 45.5 deg [1], an efficiency of 35 percent was
observed for a loss of 4.56 dB. At 8.4 GHz and at an eleva-

tion angle of 45 deg, there is a blockage loss of 0.45 dB [2].
If it is assumed that this loss is also typical of the perfor-

mance at 32 GHz and the calculated directivity efficiency

at 45 deg is 0.37 dB, then, subtracting these losses from

4.56 dB, a loss of 3.74 dB remains. Since the efficiency

was measured while the antenna was at the rigging angle,
where the surface is adjusted to remove any systematic
surface errors, it could be assumed that the 3.74-dB loss is

due to random small-scale errors in the individual panels.

A small-scale error loss of 3.74 dB is equivalent to about a

0.7-ram root mean square (rms) surface error using Ruze's
analysis.

Microwave holography imaging at 12 GtIz shows all

DSN 70-m antennas, in their initial (1988) state of adjust-
ment, as ]laving approximately a 0.7-mm rms error at tile

rigging angle. Therefore, the assumption that the 3.74-dB
loss is a small-scale error loss is reasonable. Since it is not

likely that an array feed would be able to compensate for

this type of loss, there may be a loss in excess of 3.0 dB

which is not recoverable using array techniques. Because

the study assumes a model that includes only gravitational

loads, this loss does not show up in the following analysis.

If the overall loss is needed, then 4.19 dB (4.56-0.37 dB)

needs to be added to the losses or efficiencies presented

in this article. In other words, the analysis considered

here will not significantly improve the antenna efficiency

at the rigging angle, which is about 35 percent as mea-

sured in [1]. It should be noted that evidence exists that
the 0.7-mm rms small-scale surface errors can be reduced

to 0.45 mm by means of a more time-consuming panel ad-

justment. This procedure might increase the efficiency to

approximately 50 percent at the rigging angle.

A. Effects of Element Size on Performance

Once the best geometry is established, the next step is
to determine the effect of the array feed horn element size

on the ability of the array to recover lost efficiency. Since

the geometry selected places the array elements on a trian-

gular lattice, the element size establishes the element spac-

ing. Four array sizes were evaluated: 1, 7, 19, and 37 ele-

ments. An extreme antenna elevation angle of 75 deg was
selected for calculation. The results for element diameters

ranging from 0.25 in. (0.68 wavelength) to 2.00 ill. (5.4
wavelengths) are shown in Fig. 5 for zero-thickness walls.

Figure 6 is a similar plot for a smaller range of horn sizes,
for horns with 0.05-in.-thick walls. The 0.25-in. diame-

ter is the smallest practical size to be considered, since the
cutoff diameter for the TEll fundamental mode at 32 Gttz

is 0.216 in. At a diameter of 0.5 in., the TMll mode can

be supported. Therefore, single-mode horns were evalu-

ated for diameters less than 0.5 in., and dual-mode horns

were evaluated for diameters of 0.5 in. and larger. Because

dual-mode horns equivalent to the 22-dB standard hybrid-
mode horns have aperture sizes of about 1.75 ill., this size

was included as the largest practical size of interest, and
the plot was extended to 2.00 in. to see how the curve

behaved beyond the largest practical size.

The curve for a single element is what one would expect
(Fig. 5). The gain peaks at about 1.75 to 2.00 in., where

the best performance would normally be found if no dis-

tortions were present, since the antenna optical design was

optimized for horns of this size. As the element size be-

comes smaller, the efficiency drops, as expected, since the
antenna reflectors become overilluminated. Looking at the

curves for more elements, it can be seen that the additional

elements do not compensate for tile illumination losses un-

til a diameter of 0.75 in. is reached, and then tile perfor-

mance is still not as good as at 1.75 in. or above. It is not
until the single-mode conical horn size of 0.35 in. is reached

and 19 or more elements are used that performance equiv-

alent to the larger dual-mode horns is approached. Thus
the performance reaches a maximum for horn diameters of

approximately 0.35 and 1.75 in.
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For a more detailed study, tile cases of interest are those
with 1.75- and 0.35-in.-diameter horns. To answer the

question of whether an intermediate point might be bet-
ter if pointing or subreflector errors are considered, the
1.25-in. case was also selected. Finally, a case using the

standard 22-dB corrugated (hybrid-mode) horns was se-
lected as a reference case. The spacing for the corrugated

horns is 2.2 in. to allow space for the corrugations.

The horn wall thickness affects how closely the horns

can be positioned. If the horn walls are tapered at the

aperture, then they can be spaced as if there were no wall
thickness. This is the case in Fig. 5. To illustrate the ef-

fect of wall thickness, a set of calculations for horns with

0.05-in. walls at the aperture was made, and the results

are plotted in Fig. 6. The efficiency for a series of horns
with 0.05-in.-thick walls falls off more rapidly than for zero

thickness simply because the horn size refers to the max-
imum horn diameter and the wall thickness then detracts

from the horn's effective aperture. The effect is more pro-
nounced for the smaller sizes, since the wall thickness ac-

counts for a larger percentage of the horn size. For all

arrays with elements smaller than 1.75 in., zero wall thick-

ness gives significantly better results. For 1.0-in.-diameter
elements, for example, the differences are on the order of
1.0 dB. This is one illustration of how critical the feed de-

sign is to achieving the maximum recovery of the energy
in the antenna focal region.

B. Effects of Antenna Elevation Angle

Figures 7 through 10 show the performance of the array
feed as a function of the antenna elevation angle. (Note

the change in the range of elevation angles in Fig. 8.) It
can be seen that the performance peaks at 45 deg and

then drops off as the elevation angle either increases or
decreases. The best performance is obtained at 45 deg

because the antenna surface shape is adjusted at this angle

to compensate for any gravitational distortions. This is

referred to as the rigging angle. Tile rigging angle could

be any angle, but for the structural model used in this

study the angle was set at 45 deg. As the antenna elevation

angle diverges from the rigging angle, further gravitational
errors cause the surface to deviate from the optimum shape

and the antenna efficiency begins to degrade. With the

exception of the case shown in Fig. 8, tile elevation angles

for this study range from 7.5 to 75 deg, which covers the

operational angles imposed on tile antenna system.

The effects of element spacing can be seen by comparing

tile curves for the standard hybrid-mode horn (2.2-in. di-

ameter) in Fig. 7 and the 1.75-in. dual-mode horn in Fig. 8.
For the single-element case the performance is the same for

both horn types to within a few hundredths of a decibel

over the range of elevation angles. This is to be expected,

since the patterns for a single horn for these two cases
are very similar. The efficiency ranges from -3.5 through
-0.4 to -2.3 dB over these elevation angles, showing that

there is significant room for improvement. When seven
elements are used, the dual-mode horns with their denser

packing have better performance by 0.5 dB at 7.5 deg than
the hybrid-mode horns. With 37 elements, the difference

at 7.5 deg is 0.6 dB, and at 75 deg it is 0.13 dB.

Considering the 1.75-in. dual-mode configuration only,

the following observations can be made. At 45 deg, the
loss is 0.42 dB for a single horn, which is the directiv-

ity loss for an undistorted reflector; with a properly de-

signed feed such as the one used, it represents the best
performance achievable. Using additional horns at 45 deg

does not change the performance. At an elevation angle

of 7.5 deg, a single element has a loss of 3.48 dB, seven
elements have a loss of 2.04 dB, and 37 elements have a
loss of 1.72 dB. Thus there is an improvement of 1.44 dB

when going from one to seven elements and 1.77 dB when

going to 37 elements. At an elevation angle of 75 deg, a
single element has a loss of 2.35 dB, seven elements have a
loss of 1.73 dB, and 37 elements have a loss of 1.49 dB. In

this case there is an improvement of 0.62 dB when going

from one to seven elements and 0.85 dB when going to 37

elements. The array feed in effect has halved the losses
due to surface distortion when using 37 elements at tile

extremes in elevation angles, with most of the improve-

ment achieved by adding one ring of elements for a total
of seven elements.

Tile performance curves shown in Fig. 9 for the 1.25-in.

dual-mode horns are considerably lower than those for the

previous cases at all elevation angles and for any num-
ber of horns. The loss at 45 deg with a single element
is 1.33 dB because the antenna is overilluminated by the

smaller horn. It is interesting to note, however, that with

additional elements at this elevation angle no significant

performance improvement is achieved. This shows that,
for shaped-reflector designs and with small reductions in

horn size, the outer horns do not effectively capture the
small amount of energy no longer collected by the center

element. For the 0.35-in. single-mode horn (Fig. 10), it

takes 19 elements to get to within 0.0 to 0.2 dB of a single
1.75-in. horn over the range of elevation angles calculated.

It takes 37 elements to get within 0.1 dB of a single 1.75-

in. horn at a 45-deg elevation angle. Thus, for c_ses where

the antenna is properly pointed and the subreflector is in

the optinmm position for the elevation angle, the smaller
elements provide no real advantage and the 1.75-in. dual-
mode horn is the better choice.
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C. Performance Versus Pointing Angle

In addition to compensating for distortions with a prop-

erly pointed antenna, an array feed can also be used to cor-

rect for antenna pointing errors. These pointing errors call

be due to rapid changes in the surface distortion, a lack of

knowledge of what the pointing errors are for a given eleva-

tion angle, or a limitation in the pointing accuracy of the
antenna control system. A pointing accuracy on the order

of 0.003 deg is considered good for the 70-m antenna and

causes a negligible loss at 8.4 GIIz, the current maximum

operating frequency. At 32 GHz, however, a pointing error
of this magnitude can give rise to a 1.75-dB loss. Pointing

errors were simulated in this study by calculating the per-

formance improvements along directions at various angles

relative to the best antenna pointing angle (boresight).

With one exception, the calculations were made at an el-
evation angle of 75 deg so as to include the effects of sur-

face distortions. Cases were calculated for 0.35-in. single-
mode horns, for 1.25- and 1.75-in. dual-mode horns, and

for a 2.2-in. hybrid-mode horn. The one exception is tile

2.2-in. hybrid-mode horn, for which an elevation angle of
45 deg was used.

Tile performance of the 2.2-in. hybrid-mode horn is

shown in Figs. 11 and 12. For an elevation angle of 45 deg

(Fig. 11), it can be seen that the performance as a func-

tion of boresight offset angle is virtually the same for any
number of elements. This indicates that only one element

is contributing to the antenna performance. Figure 13 il-

lustrates the antenna beam patterns for four feed elements
(one located on the antenna axis and three located at var-

ious radial distances from the axis). For elements other
than the central one of an array feed to compensate for

losses due to a pointing error, they must contribute signal
power in the direction of the pointing error. If a pointing

error of 0.003 deg is assumed, from the figure it can be seen
that only the first beam has any energy in that direction.

The next beam (Y = 1.8621) is considerably more than
16 dB down from the contribution of the center element

at 0.003 deg. (Note that the curves do not extend low

enough to provide a more accurate value.) At this level
the second element (or for that matter any of the other

additional elements) cannot significantly contribute to im-

proving the performance for a pointing error on the order

of 0.003 deg. This effect can be seen for a 75-deg elevation
angle in Fig. 12, where the separation of the four curves re-

mains essentially constant as a function of boresight offset
angle over typical pointing errors.

As will be seen later, significant pointing error improve-

ments will not be seen until the feed size, and therefore the

feed spacing, is reduced by three or more times and a larger

number of elements is used. This problem is aggravated by

the shaped reflector design of the 70-m antenna. Shaped
designs provide nearly uniform illumination, which in turn

provides the narrowest beamwidth for a given antenna size.

Conventional antenna designs do not provide uniform il-
lumination and therefore have much wider beamwidths.

These wider beamwidths for conventional-design antennas

allow higher crossovers between adjacent beams and there-

fore a higher potential to compensate for pointing errors
than for shaped designs.

The following discussion applies to elevation angles of
75 deg. The hybrid-mode horn case (Fig. 12), over the

range of -0.004 to 0.002 deg (for a pointing accuracy of

0.003 deg) with seven elements, gives an improvement over

and above the distortion compensation of only 0.2 dB at

-0.004 deg and 0.0 dB at 0.002 deg. Additional elements

do not give any additional pointing-error compensation.

The 1.75-in. dual-mode horn case (Fig. 14) has a perfor-
mance very similar to the hybrid-mode horn case over the

range of -0.004 to 0.002 deg, except for a 0.2-dB improve-

ment at 0.002 deg for seven elements. Thus the larger horn

sizes show little potential for pointing correction. The

1.25-in. dual-mode horn case (Fig. 15) shows improved
pointing capability with additional elements over the same

angles. Unfortunately, because of the lower performance

at the best pointing angle, all the element curves for the

1.25-in. case are below the corresponding ones for the

1.75-in. case over a range of pointing errors of 0.006 deg.
Therefore the 1.25-in. case is not as good a choice as the

larger array sizes unless it is a requirement to support a

range of pointing errors larger than 0.008 deg.

The arrays with smaller elements have much better

pointing-error correction capability. The correction capa-

bility for the 0.35-in.-diameter single-mode horn is shown
in Fig. 16. The performance with one or seven elements

is not as good as can be achieved with 1.75-in. elements,
since with such a small number of elements the antenna

is overilluminated. The performance of tile 0.35-in. case

with 37 elements and no pointing correction falls between
that for one element and that for seven elements for the

1.75-in. case. Over a range of pointing errors of 0.006 deg,
the 0.35-in. case with 37 elements has from 1.0 to 1.2 dB

better performance than the 1.75-in. case with seven ele-

ments and 0.8 and 0.9 dB better performance than the
1.75-in. case with 19 elements. The 0.35-in. case with

19 elements has 0.2 to 0.3 dB better performance than

the 1.75-in. case with seven elements and no improve-
ment over the 1.75-in. case with 19 elements. For error

ranges greater than 0.006 deg, which could result from
wind gusts, 0.35-in. arrays with 19 or more elements have
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an advantage. This advantage, however, is at the expense

of the better performance that would be achieved with
19 1.75-in. horns if the pointing errors were normally lim-

ited to a range of errors smaller than 0.006 deg.

For pointing error compensation and with 37-element
designs, arrays with 0.35-in.-diameter horns are best. For

19-element designs, arrays with 0.35-in.-diameter horns are

better when pointing errors are greater than 4-0.003 deg.

For seven-element designs, arrays with 1.75-in.-diameter

horns are better, even though the 1.75-in. design has no

pointing correction capability.

D. Performance Versus Subreflector Lateral Position

The ability of the array feed to improve performance

was analyzed with the subreflector located at the position

that gives the best performance as a function of elevation

angle. In actual practice, the subreflector will normally be
set at this location, and it is useful to know how accurately

the subreflector needs to be positioned to maintain optimal
performance. In addition, knowledge of the effect of array

design on subreflector positional accuracy would be useful

in the selection of an optimum array design. First consider
the case using the hybrid-mode horn. Figure 17 shows the

antenna at 45 deg, and therefore the results do not include

any distortion effects. The number of elements has no ef-
fect on the performance until the positional errors exceed

0.1 in., well within the expected positional accuracy. In

order to hold the losses within approximately 0.2 dB, the

subreflector needs to be set within 0.03 in. Figure 18

shows the performance at an elevation angle of 75 deg.
Although the performance is lower because of the surface

distortions, the sensitivity to subreflector position for a

single element remains about the same. Over the region of

interest, additional elements do not improve performance.

Figures 19 through 21 show the performance of the smaller
feed elements. The 1.75-in. dual-mode design behaves

essentially the same as the hybrid-mode design over the

small range of displacements expected. The relative per-
formance between elements of different sizes is similar to

that seen for beam-pointing performance. The subreflector

is less sensitive to position for the 1.25-in. dual-mode case
than for the 1.75-in. case when the use of more than one

element is considered. The 0.35-in. single-mode case has a

low sensitivity to position with 19 elements, the minimum
number of elements that is practical with elements of this

size. With 37 elements, the 0.35-in. design is virtually in-

sensitive to subreflector position over 4-0.1 in. However,

if the subreflector can be positioned within 4-0.04 in., in-

cluding wind gusts, then the seven-element 1.75-in. horn
case still represents the best overall performance.

IV. Summary and Conclusions

The previous discussion covers the calculated perfor-

mance of the 70-m antenna when used beyond its design

frequency, where surface distortions detract from its per-

formance. An array of circular feed horns arranged in a
triangular lattice was used to recover some of the lost per-

formance. A study was conducted to determine how effec-

tive this method is in recovering the lost performance so

that the potential improvement from increasing the oper-

ating frequency can be judged.

Although the cost tradeoff for this concept is beyond
the scope of this study, some useful observations can be

made. It was indicated that the measured gain loss at

32 GHz at the rigging angle was 4.56 dB with a hybrid-

mode feed horn. The calculated radio frequency (rf) losses,
which do not include random small-scale surface distor-

tions, quadripod blockage, or dissipation losses, for a sin-

gle hybrid-mode horn with the antenna at the rigging an-

gle are 0.37 dB. This indicates that the small-scale sur-
face distortion, quadripod blockage, and dissipation losses

are 4.19 dB. Adding this loss to the calculated rf loss of

3.48 dB at an elevation angle of 7.5 deg gives an over-

all loss of 7.67 dB. This is to be compared with a 1.8-dB

loss at 8.4 Gttz, composed of a 1.5-dB efficiency loss [2]
and an antenna distortion loss of 0.3 dB at 7.5 deg. This

gives a net loss of 5.87 dB at 32 GHz relative to 8.4 GHz

at 7.5 deg. In order to evaluate the significance of this

relative loss, this loss along with any relative losses asso-
ciated with the spacecraft system would have to be sub-

tracted from the potential gain increase of 11.6 dB due to

frequency scaling. Thus, subtracting the 5.87-dB relative

loss from 11.6 dB leaves a 5.73-dB net improvement, less

any spacecraft-related losses.

As mentioned earlier, the small-scale rms error of the

70-m antennas is about 0.7 mm. A large part of this error
is panel setting error. Recent data indicate that the panels

could be readjusted, using holography techniques, to pro-

vide an rms error of about 0.45 mm. If this improvement
can be achieved, 2.2 dB of the small-scale surface error
losses could be recovered and as much as a 7.93-dB net

improvement could be obtained. A long-term goal is to
achieve a 0.25-mm rms surface accuracy by the year 2000,

and this could provide 1.0 dB of additional improvement
at 32 GHz.

As the study shows, some of the lost performance can

be recovered with an array feed. It was further shown

that arrays with 1.75-in.-diameter horns gave the best im-

provement for distortion errors, For seven elements at

7.5 deg, the array feed would recover 1.44 dB of the es-

timated 3.48-dB gravity distortion loss. Going to 19 or
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37 elements would recover only an additional few tenths

of a decibel and is not practical to consider at this time.

To provide pointing-error compensation, small array el-
ements are required, with the 0.35-in.-diameter horn ele-

ments performing best. Although the peak gain of the

1.75-in. array elements in the boresight direction is higher
than for the 0.35-in. elements, the scanning capabilities of

a 37-element array of 0.35-in. elements allow it to exceed

the static performance of an array of 1.75-in. elements.

For pointing errors in excess of 0.003 deg, an array of 19

0.35-in. elements will give better performance. Using fewer
than 19 elements for the 0.35-in. element array is not prac-

tical, since they would cover a smaller area than a single

1.75-in. horn. Since a single 1.75-in. horn is close to op-
timum for an undistorted antenna, a 0.35-in. array with

fewer than 19 elements would never be able to effectively

illuminate an undistorted antenna, much less a distorted

one.

The question naturally arises as to why more of the

energy lost to large-scale surface distortions cannot be re-
covered. Why is the recovery limited to about half of the

lost power? There is no simple answer at this time. The
analysis was done in the transmit mode. Patterns and

excitations were assigned to the array feed, and the el-

fect on the overall gain of the antenna was calculated in

the presence of surface errors. This method gives no in-

sight into what the focal fields look like and how they are

affected by the antenna distortions. In addition, the trans-

mit method gives no idea of how effectively the array feed

system samples these focal plane fields. What is required
is to calculate the performance in the receive mode. This

would directly provide the focal plane fields. In turn, by

correlating the aperture fields of the array horns with the

focal plane fields, the performance of the antenna can be

predicted. More importantly, greater visibility of what is

happening to the fields in the focal plane region would

provide a method for determining the best array geometry

and horn type for surface-error compensation.

A program capable of efficiently computing the receive-

mode patterns of a 70-m antenna at 32 GIIz did not exist

at the time this study began. Also the field correlation
technique required needed to be developed. Further work

needs to be done to implement and use tile receive mode

of analysis, and then other classes of feed horn designs
need to be studied to determine how much more of the

lost power can be recovered. If more of the lost power is
recoverable, then it must be determined what the potential

improvements are and whether array feeds represent the

best way to implement a 32-GHz capability.
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Steady-State Phase Error for a Phase-Locked Loop

Subjected to Periodic Doppler Inputs
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The performance of a carrier phase-locked loop (PLL) driven by a periodic

Doppler input is investigated. By expanding the Doppler input into a Fourier

series and applying the linearized PLL approximations, it is easy to show that, for

periodic frequency disturbances, the resulting steady-state phase error is also pe-
riodic. Compared to the method of expanding frequency excursion into a power

series, tile Fourier expansion method can be used to predict the maximum phase-

error excursion for a periodic Doppler input. For systems with a large Doppler-rate
fluctuation, such as an optical transponder aboard an Earth-orbiting spacecraft,

the method can be applied to test whether a lower order tracking loop can provide

satisfactory tracking and thereby save the effort of a higher order loop design.

i. Introduction

Coherent carrier phase recovery using a phase-locked

loop (PLL) has become an integral part of digital commu-

nication systems [1-3]. By performing coherent demodu-
lation using the recovered signal carrier, tile receiver can

achieve 3 dB of performance gain over systems using non-.
coherent demodulation techniques. The ability to recover

and track the incoming carrier phase can also lead to a

significant performance gain in related applications such
as coherent ranging and spacecraft navigation [4].

The performance of a phase-locked receiver depends

critically on the ability to accurately recover the carrier

phase. Synchronization errors between the incoming sig-
nal and the local reference can quickly lead to a degraded

signal-to-noise ratio (SNR) and a large power penalty. The
design of the loop, therefore, must ensure proper phase

tracking under the operating conditions. In general, the

performance of the PLL is influenced by the additive cir-
cuit noise, the oscillator frequency noise, and the frequency

characteristics of the signal it is designed to track. The ef-

fect of channel noises on the performance of the PLL has

been studied extensively [1-4]. It is shown that, in gen-

eral, the residual phase tracking error due to the additive

noise increases with PLL bandwidth, whereas the tracking

error due to the oscillator frequency noise decreases with

increasing loop bandwidth. With a given SNR, therefore,
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there is an optimal choice of receiver bandwidth and PLL

design that mininfizes the root-mean-square (rms) phase

tracking error.

In addition to the channel and oscillator noises, the

performance of the PLL is also affected by the frequency

characteristics of the source. A simple first-order loop can

provide adequate tracking only when the free-running fre-

quency of the voltage-controlled oscillator (VCO) is equal
to the frequency of the incoming signal. A second-order

loop is needed to track a constant frequency offset, whereas
a third-order loop is needed to track a signal with lin-

early varying frequency. In general, higher order loops are

needed to compensate for higher order frequency distur-

bances. Itowever, higher order loops present extra design
complications since control loops higher than second order

are not unconditionally stable. Furthermore, for systems

with large dynamic frequency fluctuations, the frequency

perturbations with orders higher than the control loop can-

not be completely compensated by the loop. As a result,

some residual phase tracking error always remains.

Since the performance of the PLL-based receiver de-

pends on the ability to accurately track the carrier phase,
it is important to estimate the amount of residual track-

ing error due to the higher order frequency perturbations.

The analysis of PLL performance given a time-dependent

Doppler input is generally accomplished by expanding the

Doppler signal into a power series and then analyzing the
effects of different power terms separately. The power-

series expansion provides a simple and intuitive method of

expanding the Doppler frequency term. Itowever, it is dif-

ficult to justify dropping the higher order terms since the

steady-state phase error due to higher order terms does
not converge.

For a very special class of system, the Doppler signal

is periodic. In this case, the phase-locked loop equation

can be examined by performing a Fourier decomposition

rather titan a power-series expansion. In this article, the

procedure of analyzing the residual phase tracking error
using a Fourier expansion of the frequency perturbation is
outlined.

II. Carrier Phase Tracking Loop

The essentials of a carrier PLL include a phase detec-

tor, a loop filter, and a VCO. Shown in Fig. 1 is a typical

implementation of a radio-frequency (RF) PLL. The phase
detector detects the phase difference between the incom-

ing signal and the output of the VCO. For carrier phase

tracking applications, an RF mixer is generally used as

the phase detector. The mixer output is filtered by the

loop filter with transfer function F(s). The sum frequency

term at the mixer output is filtered by the loop filter such

that the loop effectively responds only to the difference fre-

quency term. When the frequency of the signal is equal to

that of the VCO, the difference frequency term is simply

proportional to sin _b(t), where _(t) is the phase difference

between the signal and VCO output.

The filtered phase-difference signal is subsequently in-
jected into the receiver VCO. The output frequency of the

VCO is linearly dependent on the input voltage signal.

When the loop eventually reaches a locked condition, the

pllase-error signal, _b(t), will be such that it is governed by
the following loop equation:

d+(t)
dt-- + AKf(t) ® [n(t) + sine(t)] =/3(t) + fN(t) (1)

where n(t) is the additive noise, fN(t) is the oscillator fre-
quency noise, and/3(t) is the frequency error between the

signal and the local oscillator. The loop mechanization

is represented by the signal amplitude, A; the VCO gain

constant, /t'; and the impulse response of the loop filter,

f(t). For systems operating with an ample signal-to-noise
ratio, the effect of additive noise is usually very small. At

the same time, a relatively high SNR allows oscillator fi'e-

quency noise to be tracked out. For this analysis, therefore,

the focus is on the frequency detuuing term.

If the phase error is small (the loop is in lock), the sine

function can be approximated by its argument, and the

phase error of the PLL can be adequately described using
the following linearized form:

d_(t)
d---i-+ AKI(t) ® 4_(t)=/3(t) (2)

The integral-differential equation in Eq. (2) can be simpli-
fied into a linear differential equation of tile form

d"¢(t) d¢(t)
dr-----T- + ... + al ---7[- + aoO(t) =

dn-1/3(t) dfl(t)
bn-1 dtn_ 1 +...+bi----_+bofl(l) (3)

where tile coefficients {aj } and {bj} are related to the loop
transfer function H(s) by
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bn_ls '_-1 + ... + bls + bo 1

s '_ + ...+ als + ao s + AKF(s)

= 1[1 - H(s)] (4)
s

Equivalently, it can also be simplified into a set of first-
order differential equations [5]. Given the frequency de-

tuning process, fl(t), Eq. (3) can be solved for the steady-
state phase error. For a time-varying frequency detuning

process, one method of simplifying the analysis is to ex-

pand/3(t) into a Taylor series and then retain only terms
sufficient for the analysis. Since the system is linear, the

solution obeys the superposition principle and is equal to

the sum of solutions of individual expansion terms.

In general, the solution to Eq. (3) includes the transient

response and the steady-state response terms. The tran-
sient response, which depends on the initial conditions,

dies out after a time period that is on the order of the

inverse loop bandwidth. If the phase error converges to

a constant, the steady-state solution can be easily solved

by Laplace transforming Eq. (3) and using the final value

theorem, i.e.,

sB(s)
lin, ¢(t) = lims.(I)(s) = lim (5)
t-_¢ _-0 ,_0 s + AKF(s)

where F(s) and B(s) are the Laplace transforms of f(t)

and fl(t), respectively. Equation (5) is applicable only

when the steady-state solution exists as a constant value.

For higher order perturbations, the final value in Eq. (4)
does not converge, and the Laplace transform cannot be

used to solve for the steady-state response. Fortunately,

it is known from the linear differential equation theory

that the general solution to Eq. (3) for a driving force of

the form /?(t) = a,t" is a polynomial of order n. The
steady-state phase error can therefore be solved by substi-

tuting tile polynomial of order n into the right-hand side

of Eq. (3) and then matching the coefficients.

Although the steady-state phase error can be solved

by assuming a polynomial general solution, the resulting

polynomial is diverging at t ---* oo. Since most physical
systems do not have unbounded frequency variation, the

higher order perturbation eventually dies down. The anal-

ysis of the PLL performance using higher order perturba-
tion is therefore limited to the time period within which

the perturbation is present. The loop design is said to be
adequate if the effects of the higher order perturbation are

small. Because of the complexity of designing higher order

tracking loops, the analysis of the time-varying Doppler

term is generally limited to third order or less. Justifica-
tions for dropping the higher order terms, however, can be

very difficult since the solution is not bounded.

III. Fourier Expansion of the Time-
Dependent Doppler Signal

Since the frequency fluctuation at the input is generally

bounded, polynomial approximation to the Doppler signal

will eventually become greater than the input. If the time

period of interest is longer than the time for the polynomial
approximation to deviate from the signal, a better (higher

order) approximation is needed to analyze the PLL behav-
ior. For some class of missions such as Earth-orbiting satel-

lites, however, the periodic orbit will result in a periodic

Doppler input that should intuitively result in a periodic
phase variation. For such a system, the steady-state solu-

tion can be more easily derived by expanding the Doppler

signal into a Fourier series. The resulting linearized PLL

equation can be written as

oo

d¢(t._.___)+ AK f(t) ® ¢(t) -- ¢?(t) -- _ eke ik_°t (6)
dt

k=-oo

where w0 is the fundamental frequency (reciprocal of the

period) of the perturbation. From linear differential equa-
tion theory, it is known that a linear differential equation

responding to a sinusoidal driving term with frequency w0

will exhibit a general solution with an identical frequency.

Again, the particular solution (transient response) is ex-

pected to die down with a time constant that corresponds

to the eigenvalues of the characteristic equation. Further-

more, by using the supcrposition principle, solutions to dif-
ferent harmonics can be solved individually. Consequently,

if the Doppler stimulus can be expanded into a Fourier
series, the solution can be found using the superposition

principle.

Two examples can now illustrate the power of this tech-

nique.

Example 1: First-Order Loop. It is well known

from linearized PLL theory that the first-order loop can

be used to track a constant frequency detuning (Doppler)

with a constant phase offset. Iligher order perturbation
can result in a loss of lock. If such a loop is used to track a

periodic frequency variation of frequency w0, conventional

analysis cannot adequately predict the resulting loop per-
formance, llowever, by performing the spectral expansion

of the Doppler signal
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¢3(t) = c0sincv0t (7)

the general solution to the first-order loop can be written
as

aoC 0 _oCo

¢(t) - a2 _ w2 sinwot + %2 _w------_ cos_0t (8 /

where a0 = AK = 4By is related to tile bandwidth of the

loop. It is seen from Eq. (7) that a first-order loop can be
used to track a periodic Doppler input, provided that the

loop bandwidth, frequency variation, and Doppler period
satisfy" the condition for linearizing the loop equation, i.e.,

¢(t) << 1 for all t. Furthermore, the resulting steady-state
phase error is periodic with tile same period as the driving

term, but falls slightly out of phase from tile driving input.

Example 2: Perfect Second-Order Loop. It is

known from the linearized loop theory that a perfect

second-order loop can be used to track out a constant

Doppler rate with a steady-state phase error. The transfer
function for the loop filter is

l+r2s
F(s) - (9)

3"18

By substituting Eq. (9) into the PLL equation and con-

verting the resulting equation back to the time domain,

d2d(t) a dO(t) &3(t) (10)
dt---Z- + 1---7 + aoO(t) - dt

where al = AKr2/rl, and ao = AN�r1. The general
solution to this equation can be reached by substituting
the solution of the form

6(t) = Psinw0t+Qcos_'0t (11)

into Eq. (10) and equating the coefficients. It is found

that the general (steady-state) solution due to the periodic

Doppler input is given by

9

C00.)_ _ 1

= (.0 - + sin 0t

co, o(oo-
+ - .'7"Z'7",----_- 2 cos_'0t (12)

(oo - _0)" + cti_0

Again, the constants must satisfy the constraints that

¢(l) << 1. Note that the loop bandwidth can be related to
the constants a0 and al by

O0 at
BL = --+-- (13)

4al 4

The difference between the Fourier solution and the

power-series solution can be seen in Fig. 2 where the

steady-state phase response of the linear loop to a sinu-

soidal frequency excursion has been plotted. The power-
series solution was calculated by expanding the sinusoid

into a power series and retaining the first two terms

(Doppler rate and second derivative of Doppler). It is

seen from the figure that the power-series solution is a
close approximation to the actual solution during the ini-

tial 1/4 period, lIowever, as soon as the approximation

to the sinusoid breaks down, the power-series estimate di-

verges, whereas the actual solution remains bounded.

IV. Discussion

Expanding the Doppler signal into a Fourier series offers
a different perspective in predicting the PLL performance.

Unlike the power-series expansion method that, although

intuitive, cannot adequately predict the performance un-

der higher order perturbations, the periodic expansion of
the Doppler results naturally in a periodic phase solution.

As a result, the theory can predict a bounded solution even

when the driving force (Doppler) has a higher order com-

ponent. For applications where a good phase synchroniza-

tion is essential, such as collerent data communications,

the Fourier solution can provide an adequate estimate of

the maximum phase-error excursion.

An example for the problem occurs in the design of the

optical phase tracking loop between a low Earth-orbiting

satellite and a ground station. At the operating wave-
length of 1 pro, the relative Doppler rate of the two ter-

minals can change from +300 Mltz/sec to -300 Mllz/sec
within 30 seconds. Given a PLL of 20 kllz bandwidth,

it is difficult to predict whether the loop can remain ade-

quately' in lock during the period. By approximating the

Doppler signal near the portion of the orbit with maxi-
nmm frequency change as a sinusoid, however, a simple

estimate of the PLL performance can be obtained. For a

frequency excursion with 3-Gltz amplitude and 60-second

period, it can be shown that the loop can adequately track

the Doppler with less than 0.2 radian of residual error.

Altrlmugh the Fourier expansion provides a bounded so-

lution for a periodic varying Doppler signal, there are some
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practicallimitationsinapplyingtheFourieranalysistech-
nique.First,thesolutionpresentedaboveignoresthetran-
sientsolution.Thisis trueonlywhentheperiodofthedy-
namicsignalis longcomparedto theloop-responsetime.
Furthermore,theresultsarederivedonlyfor a linearized
equation.Fora nonlinearPLLequation,aperiodicdriv-

ingforcecanexcitehigherharmonicterms.Finally,for
apredictableperiodicdrivingforce,it is a usualpractice
to applyaperiodicestimatorcorrectiontermat theVCO
inputto compensatefor theperiodicdrivingforce.In this
case,thedetuningis smallandthe loopwill essentially
respondonlyto thenoiseinputs.
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This article tabulates continuous probability density functions and discrete prob-

ability mass functions which maximize the differential entropy or absolute entropy,
respectively, among all probability distributions with a given Lp-norm (i.e., a given

pth absolute moment when p is a finite integer) and unconstrained or constrained

value set. Expressions for the maximum entropy are evaluated as functions of the

Lp-norm. The most interesting results are obtained and plotted for unconstrained
(real-valued) continuous random variables and for integer-valued discrete random
variables.

The maximuzn entropy expressions are obtained in closed form for unconstrained
continuous random variables, and in this case there is a simple straight-line relation-

ship between the maximum differential entropy and the logarithm of the Lp-norm.

Corresponding expressions for arbitrary discrete and constrained continuous ran-
dom variables are given parametrically; closed-form expressions are available only

for special cases. However, simpler alternative bounds on the maximum entropy

of integer-valued discrete random variables are obtained by applying the differen-
tial entropy results to continuous random variables which approximate the integer-
valued random variables in a natural manner.

Most of these results are not new. The purpose of this article is to present

all the results in an integrated framework that includes continuous and discrete
random variables, constraints on the permissible value set, and all possible values

of p. Understanding such as this is useful in evaluating the performance of data

compression schemes.
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I. Introduction

The differential entropy h{x} of a continuous, real-

valued random variable z with probability density f(z)
is defined as

fh{z} = -g{log[f(z)]} = - f(z) log[f(x)]dx (1)
o0

For any positive (or infinite) integer p = 1,2,3,...,oo,

define the Lv-norm Mp{x} of the random variable x as

Mp{x} = [E{IxlP}] 1/p

= y(_)lxlPdx , p = 1,2,3, ...

M_{x} = lim Mp{z} = ess suplxl
v--.0 y(_)>0

(2)

The essential supremum in Eq. (2) is the smallest number

that upper bounds Izl almost surely.

Sometimes the real-valued random variable x is con-

strained to lie within a subset E of the real line; in this

case, the integrals in Eqs. (1) and (2) need only extend
over the subset E.

For a discrete random variable X with discrete value

set "= = {(i} and probability mass function F((i), its (ab-

solute) entropy H{X} is defined as

H{X} = -E{log[F(X)]} : - E F((i)log[F((/)] (3)
i

The Lp-norm Mp{X} of the discrete random variable X
is defined as

1/v

, p: 1,2,3 ....

Moo{X} = lira Mp{X} : sup I(,I (4)
p---* oo F((,)>0

This article tabulates continuous probability density

functions f(x) = f_(z;;_) or f(z) = f_(x;/l, -'=) and

discrete probability mass functions F((i) = F_((i;p,Z)
which maximize the differential entropy h{x} or absolute

entropy H{X], respectively, among all probability distri-

butions with a given Lp-norm Mp{x} or Mp{X} and un-
constrained or constrained value set --. The most interest-

ing results are obtained and plotted for unconstrained con-

tinuous random variables and for integer-valued discrete

random variables. Finally, alternative simpler bounds on

the entropy of integer-valued random variables are ob-

tained by modifying the bounds on differential entropy for
unconstrained continuous random variables.

Most of these results are not new. In fact, the maxi-

mum-entropy continuous distributions for p = 1,2 (Lapla-
cian and Gaussian distributions, respectively) have been

known since Shannon's original work [1]. The purpose of
this article is to present all the results in an integrated
framework that includes continuous and discrete random

variables, constraints on the permissible value set, and all

possible values of p.

Throughout this article, regular italic notation is used

for an ordinary function of a real variable, such as f(x) or

F((i), while boldface notation is used for an operator ap-

plied to a random variable, such as h{z} or H{X}, Mv{x }
or Mp{X}, or the expectation operator E{.}. In order not

to interrupt the main presentation, proofs of all stated re-
sults are relegated to the Appendix.

II. Effects of Elementary Transformations

A scaled random variable x' : qx or X' : qX, where

q is a constant, has a correspondingly scaled Lp-norm:

Mp{x') = IqlMp{x}

Mv{X'} = IqlMp{X} (5)

A discrete random variable X with value set =" = {(i}
scales to a discrete random variable X' with scaled value

set q= - {q(i}. The entropy of a discrete random vari-

able is unaffected by scaling, but the differential entropy
of a scaled continuous random variable either increases or
decreases:

h{z'} = h{z} + log[Iql ]

H{X'] = H{X} (6)

The change in the differential entropy of a scaled continu-

ous random variable exactly equals the change in the log-

arithm of its Lp-norm:

h{z'} - h{x} = log[Mv{x'}] - log[Mp{x}] = log[[ql ]

(7)
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In contrast, the Lp-norm of a discrete random variable
can be made arbitrarily small or large without affecting

its entropy, simply by scaling its value set.

A shifted random variable x" = x - A or X" = X - A,

where A is a constant, has the same differential or absolute

entropy as the unshifted random variable,

h{x"} = h{x}

H{X'} = H{X} (8)

but a different Lp-norm. A discrete random variable X

with value set E = {_i} shifts to a discrete random vari-
able X" with shifted value set E - A = {_i - A}. A
random variable x or X is centered with respect to the

Lp-norm if no shifted version has a lower Lp-norm. A cen-
° or ° can be obtained from antered random variable xp Xp

uncentered random variable x or X by applying an opti-

mum shift A = A_. This optimum shift equals the median
of the random variable for p = 1, the mean value of the

random variable for p = 2, and the average of the essential

infimum and essential supremum of the random variable

for p = oo. The centered Lv-norm M_{z} or Mg{X} of
the random variable x or X can be defined as

M;{x} = rn_n Mp{x - A} = Mv {x - A;} = Mp{xp}

ME{X } = min Mp{X - A} = Mp {X - Ap} = Mp{X;}
A

(9)

III. Maximum Differential Entropy for
Continuous Random Variables

For any positive real nurnber p and any positive (or

infinite) integer p = 1,2,..., o¢, let x_(/_) be a continuous
random variable with probability density f_(x;/_), where

f_(z;tt) = exp(-lxlP/Pt_P) p = 1,2,3 ....

2.pl/p r (_)'

1,
0, I_1 >

(10)

and F(.) is the gamma function. These probability densi-
ties are all properly normalized, i.e.,

_of_,(x;l_ ) dx = 1, p = 1,2,3,...,cx_ (11)
OO

The probability densities f_,(x; p) for p = 1,2, 0o are the
well-known Laplacian, Gaussian, and uniform probability

densities, respectively.

The absolute moments of these random variables are

known in closed form:

p,_/v

n = 1,2,3 ..... p= 1,2,3,...

/D
E{IxL(#)I=}- n+l' n= 1,2,3,... (12)

Evaluating these expressions for n = p or n ---, oo yields

the Lv-norm M;(g) of the random variable x;(#):

M_(p) KMp{x;(p)}=p, p= 1,2,3 ..... ,c_ (13)

The differential entropy h_(p) of the random variable

x;(#) is calculated as

h;(,) - hlx;(_)}

h;o(p) - h{zL(p)} = log[2p]

Explicit formulas for p = 1, 2 are

(15)

Since from Eq. (13) the parameter _ equals the Lv-norm

M_(/.t) for any p, the differential entropy can be related
directly to the corresponding Lv-norm:

h;(/J) = log[2 F(+_pl)(pe)l/P] + log[M;(#)],

p= 1,2,3,...

h_(,u) = log[2] + log [ML(_) ] (16)

The differential entropy h_(p) is plotted in Fig. 1 versus

the logarithm of the corresponding Lp-norm, log[M_(/_)],
for various values of p. Note that this is a simple straight-
line relationship. In fact, the straight line has unit slope,

assuming log[M_(p)] is measured to the same logarith-

mic base as h_(p). This is consistent with the previous
observation in Eq. (7), because the scaled version of the
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random variable x_ (p) is statistically equivalent to the ran-
dom variable with scaled Lp-norm, i.e.,

qx'p(p) ¢:_ x;(lql_) (17)

If x is any continuous random variable with differential

entropy h{x} and Lp-norm Mp{x} =/_, then

h{x} <h*p(Mv{x})=h{xp(/_)}, p= 1,2,3,...,o0 (18)

i.e., x_(/_) is the maximum-entropy continuous random
variable with a fixed Lv-norm p. Since the bound in
Eq. (19) must be valid for all values of p,

h{x} < min h;(Mv{x}) (19)
P

If the random variable x is not centered with respect

to the Lp-norm, the centered random variable x_ = x-A_
has the same differential entropy as x but a smaller

Lp-norm. The differential entropy of x may be more

tightly upper bounded by applying the bounds in Eqs. (18)
O.

and (19) to the differential entropy of xp.

h{x} = h{x;} < h;(Mp{4} ) = h;(M;{x}),

p= 1,2,3,...,oo (20)

and

h{x} < rain h;(M;{x}) (21)
P

If the real-valued continuous random variable x is con-

strained to lie within a subset E of the real line, its maxi-

mum possible differential entropy is smaller than that cal-
culated above for a random variable constrained only by its

Lp-norm. Maximum-entropy distributions for constrained

continuous random variables can be obtained as simple

generalizations of the foregoing results. Let x_(p,--) be
a continuous random variable with probability density

f_(x;p,E) equal to the conditional probability density of

x;(/_) given {x;(#) • Z}, i.e.,

exp(-IxlP/pp p)
f;(x;,,---) = _;(,,z) '

O,

x G E

p = 1,2,3, ...

1
f_o(x;p, =) = a_o(P'_)'

O,

Ix] <pandx • F.

otherwise

(22)

where

@(mZ) = Lexp(-IzlP/PPP) dx, p = 1,2,3,...

" - _ 1 dx (23)a°°(P' =) = n{l=l_<_,}

The Lp-norm M;(/z, =) of the random variable xp(/l,E)is
given by

M_(p, F,) = Mp{xp(p, _)}

1

=/IL_J ' P= 1,2,3,...

ML(#,_) = Mo_{x_(p,-_)} = sup Ixl (24)
I_1_<_
xE_,

where

9_0,, _) = f (IxlT_p)exp(-IxlP/P_ p) dx,
=

p= 1,2,3,... (25)

The differential entropy h_(p,':-) of the random wmable

x'p(tz , E) is given by

hpO,,-) - h{%(., F.)}

= log[@(p, F.)] +
log[e I fl;(_, E)

p _;0,,--)

logEe][ M;O',=-) ] _= log[o,_,(p, Z)] + --
p #

p= 1,2,3 ....

hZ(., z) - h{xZ(,a,Z)} = log[_.LO,,-)] (26)

The random variable x_(p, =) is the maximum-
entropy continuous random variable with const.raincd

value set X and fixed Lp-norm M_(/_,=-), i.e., if x is any
continuous random variable with value set =, difi)_rent.ial

entropy h{x}, and Lp-norm Mp{x}, then

h{_} _<h{4(,,, _,z)}

= h;(pp,_), p = 1,2,3,...,_ (27)

where/ap is chosen to match the Lp-norm of x:
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M;(pp,E ) = Mp{z}, p = 1,2,3,...,_ (28)

Since the bound in Eq. (27) must be valid for all values of

P,

h{z} _< min h_(pp,-'=) (29)
P

If the random variable z is not centered with respect

to the Lp-norm, the differential entropy of z may be more
tightly upper bounded by applying the bounds in Eqs. (27)

and (29) to the differential entropy of the centered random

o = z -A_,:variable zv

* 0 _ 0
h{x} = h{z_} < h{z;(it;,E- A_)) = hv(itp,=- Av),

p = 1,2,3,...,c_ (30)

and

h{z} < rain h;(it_, E- A_) (31)
P

where It_ is chosen to match the Lp-norm of x_ (i.e., the
centered Lp-norm of x):

M;(itp, Z - A;) = Mp{z_}

=M;{z}, p= 1,2,3,. .. ,_ (32)

Notice that the bounds on the right-hand sides of Eqs. (30)

and (31) are calculated with reference to the shifted value

sets .E - A_, not the actual value set --.

The integrals defining @(it, E) and _(it, E) are gener-
ally not obtainable in closed form for an arbitrary value set

-Z. An interesting exception is when the value set equals

the positive half-line, i.e., E = R + = (0,_). In this case,

M;(It, R +) = M_(it) = It, p = 1,2,3,...,cx_ (33)

and

hp(it, R +) = hi(it ) -log[2], p= 1,2,3,... ,_ (34)

In other words, the maximum possible differential entropy

for a positive-valued continuous random variable is exactly
one bit less than the maximum differential entropy for a

real-valued random variable with the same Lp-norm.

IV. Maximum Entropy for Discrete
Random Variables

Discrete versions F;(_i;it, E) of the probability densi-

ties f;(z;it) can be defined in a natural manner for dis-
crete random variables X;(It, E) with discrete value set

_.= {_}:

F;(_i;it,Z)- E Y;(_;it)
J

_ exp(-I_i IV�p/-:)

- A;(It,E)
, p = 1,2,3,... (35)

• . f_,(_i; It) _ A* (it, Z-)' -
FL(_, It, Z) - _: yg(_j; It)

where

A;(it, E) = Z exp(-l_ilP/PitP)' p = 1, 2, 3,...
i

A_(/J,E) = E 1 (36)
t_d<u

The discrete probability mass function F; (_i;it, E) equals
the conditional probability mass function for the maxi-

mum-entropy continuous random variable x_(p), given

{_;(it) e z}.

The Lp-norm M;(p, E) of the discrete random variable

X; (It, =) is given by

M;(p,E) = Mp{X;(p,E)}

1

r,;(it,-)l

ML(It,-Z ) = Mm{X_o(p,--))= sup I_1
I_,1<_,

(37)

where

Bp (it, --) : E (l_i IP/it p) exp(-[(i f/ppV ),
i

p = 1,2, 3.... (as)
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The entropy H;(p,E) of the discrete random variable

X; (p, E) is given by

-

= log[A_,(#, Z)] +
log[e] B_ (U, Z)

p A;(u, Z)

l°g[e] [M;(_Pp E)] p,= log[A;(tt, _)] + _
P

p=1,2,3,...

H_o (p, _) _ H{X_o(p,-)} = log[A_(tt ' E)] (39)

The random variable X;(p,E) is the maximum-
entropy discrete random variable with value set _ and

fixed Lp-norm M;(tt, E); i.e., if X is any discrete random
variable with value set ._, entropy H{X}, and Lp-norm

Mp{X}, then

H{X} _ n{x;(up,z)}

I

= Hp(ttp,E), p= 1,2,3,...,cxD (40)

where #p is chosen to match the Lv-norm of X:

M;(Up,E) = Mp{X}, p = 1,2,3 .... ,oo (41)

Since the bound in Eq. (40) must be valid for all values of

P,

H{X} _< min H;(pp, F.) (42)
p

If the random variable X is not centered with respect to

the Lp-norm, the centered random variable X_ = X - A_
has the same entropy as X but a smaller Lv-norm. The
entropy of X may be more tightly upper bounded by ap-

plying the bounds in Eqs. (40) and (42) to the entropy of

X;.

H{X} = H{X;}

< z - A;)}

* O O

= Hp(pp,E- Ap), p= 1,2,3,...,_ (43)

and

H{X} _< rain Hi(p;,--- A_) (44)
p

where #_ is chosen to match the Lp-norm of X; (i.e., tile
centered Lv-norm of X):

M;(p;,F. - A;) = Mp{X;}

=M;{X}, p= 1,2,3,...,co (45)

Notice again that the bounds based on centered random
variables are calculated with reference to the shifted value

sets E - A_, not the actual value set =. An exception
for which the centering operation leaves the value set un-

changed (i.e., = - A_ = -:) occurs for the value set = = I
(defined below) or, more generally, for any scaled version

of it, E = qI , as long as the allowable centering shifts Ap
are constrained to multiples of the scale quantum q.

For many applications, the most interesting discrete

value sets are the set of all integers I - {0, +1, +2, +3, ...}

and the set of positive integers I + --- {1,2,3,...}. The
maximum entropy for integer-valued random variables,

H;(l_,I), is plotted in Fig. 2 versus the logarithm of the

corresponding Lv-norm , log[M_(p, I)], for various values
of p. Notice that the nonlinear relationship for integer-

valued random variables becomes essentially linear when

the Lp-norm is large compared to the (unit) interval be-
tween successive values in the value set I. In fact, all of

the curves in Fig. 2 converge to the corresponding straight-

line curves in Fig. 1 in the limit of large Lp-norm. Notice

also how the continuous curves for large values of p < oc
approach the limiting staircase curve for p = co. The max-

imum entropy curve for p = oo takes quantum jumps at

integer values of the L_-norm.

Closed-form maximum-entropy expressions as a func-

tion of Lv-norm can be obtained for discrete random vari-

ables in only a few special cases. Interesting cases include
p= 1,oo, for value sets - = i,i+ :

H_(p,I) = log [M_(p,I) + ¢I + [M_(_,I)] 2]

+ M:* (tt, I) log M;(tt'I)
X/1 + [Mi,(p ' i)]2 _ 1
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= M;(p, I)

H-, [1+ Mr(#,I ) -X/1 + [Mr(p,/)] 2]

+
1 + M_(#,I) + X/1 + [Mi"(p, I)] 2

x H2 [ql + [M{(_,I)]2 - M;(tt, I)]

H;,o(t', I) = log(2[M&(tt, I)] + 1) (46)

and

H_(la, I+) = M_(la, I+)H2 [ 1 ]M_(#,I+)"

H_(tt, I+) = log ([ML(_, I+)J) (47)

where [a] is the integer part of a and ["t_[a] is the binary
entropy function,

H2[a] = / -a log[a] - (1 - a)log[1 -- a],

[ 0,

0<a<l

a=0ora=l

(48)

V. Alternative Entropy Bounds for
Integer-Valued Random Variables

The maximum-entropy discrete distributions are not as

useful as the maximum-entropy continuous distributions

for unconstrained value sets, because closed-form results

determining the maximum entropy for a given Lv-norm are

available only in special cases. Alternative bounds on the

entropy of discrete random variables can be obtained by
approximating their discrete probability distributions with

continuous probability densities and applying the simpler
bounds on the differential entropy of continuous random

variables. In this section, entropy bounds of this kind are

obtained for integer-valued random variables (E = I).

Associate with any integer-valued random variable X a

corresponding continuous random variable x defined by

x = X + u (49)

where u is a uniform (continuous) random variable over

[-1/2, 1/2] which is independent of X. The probability
density function f(x) of the continuous random variable

x is related to the probability mass function F(X) of the
discrete random variable X as:

f(x) = F([x + 1/2J) (50)

where Ix + 1/2] maps x to the nearest integer. The dif-
ferential entropy of x equals the absolute entropy of X,

i.e.,

h{x} = H{X} (51)

and their Lp-norms are related as follows:

[Mp{x}] p =

p--1

E
r=0

r even

(.)[gP-_{X}]p-r r + 1

2--P

+--=:r(0), ; = 1,3, 5,..
p+l

1
Moo{X} = Moo{X) + (52)

Explicit formulas for p = 1,2,3,4, are:

MI{X} = MI{X} + _F(0)

1

[M2{x}]2 = [M2{X}]2 + 1--2

[Ma{x}] 3 = [Ma{X}] a + _M,IX} + 1F(O)

[M4{x}] 4 = [M4{X}]4 + [M2{X}] 2 + _-_ (53)
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The entropy of the integer-valued random variable X

is upper bounded by

H{X} = h{x} < h_(Mp{x}), p = 1,2,3 ..... cx_ (54)

Explicit bounds for p = 1,2, oo, are:

H{X}_< log[2e] + log [M1 {X} + _F(0)]

1[H{X} _< log[_] + _ log [M2{X}] 2 +

H{X} _< log[2] + log [Moo{X} + _] (55)

Since tile bound in Eq. (54) is valid for all values of p,

H{X} < rain h;(Mp{x}) (56)
p

The bound in Eq. (54) is not quite as tight as the achiev-

able bound given earlier in Eq. (40), because the step-

wise constant probability density of x = X + u given by

Eq. (50) cannot exactly equal tile maximum-entropy con-

tinuous probability density specified by Eq. (10). However,
a stepwise-constant approximation can be very accurate

when the probability distribution is much wider than the

unit step width.

VI. Summary and Potential Applications

This article has tabulated continuous probability den-

sity functions f(z) = f;(z;U) or f(z) = f_(x;t,, E) and

discrete probability mass functions F((i) = F;((i;/,, E)
which maximize the differential entropy h{x} or absolute

entropy H{X}, respectively, among all probability distri-

butions with a given Lp-norm Mv{x } or Mv{X } and un-

constrained or constrained value set E. Expressions for

tile maximum entropy are evaluated as functions of the

Lp-norm. These expressions are obtained in closed form
for the case of unconstrained continuous random variables,

and in this case there is a simple straight-line relation-

ship between the maximum differential entropy and the

logarithm of the Lp-norm. Corresponding expressions for
discrete and constrained continuous random variables are

given parametrically; closed-form expressions are available
only for special cases, ttowever, simpler alternative bounds

on the maximum entropy of integer-valued random vari-

ables are obtained by applying the differential entropy re-
suits to continuous random variables which approxilnate

the integer-valued random variables in a natural manner.

The results tabulated here have at least two potentially

useful applications. First, they can lend a t.heoretical un-

derpinning to source coding distortion measures based oil

Lp-norms. Second, they can be used to perform estimates
of the local entropy of a dataset, for which the available

local data are sufficient for obtaining good estimates of the

dataset's Lp-norm but not for a good estinaate of its his-
togram. Follow-up articles on these two applications will

appear in future issues.
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Appendix

This appendix contains proofs or derivations omitted in the main text. Equations (1), (2), (3), (4), (9), (10), (22),

(23), (25), (28), (32), (35), (36), (38), (41), (45), (48), and (49) are definitions and require no proof. Equations (7), (16),

(17), (19), (20), (21), (24), (29), (30), (31), (37), (42), (43), (44), (53), (54), (55), and (56) are trivial or straightforward
applications of preceding results. This leaves Eqs. (5), (6), (8), (11), (12), (13), (14), (15), (18), (26), (27), (33), (3.1),

(39), (40), (46), (47), (50), (51), and (52) requiring further justification.

Equation (5) follows from the linearity of the expectation operator. Equations (11) and (12) come from standard

integral tables [2]. Equations (13) and (15) require two elementary properties [2] of the gamma function: F(1 + l/p) =

P(1/p)/p and F(1/2) = v/'_. Equations (6) and (8) result from applying the definitions in Eqs. (1) and (3) to the
probability distributions of scaled and shifted random variables, obtained from standard texts [3] as:

f'(x') = f(x'/q)/tq I f"(x") = f(x" + _)

F'(X') = F(X'/q) F"(X") = F(X" + _) (A-l)

where f'(x'), F'(X'), f"(x"), and F"(X") are probability density or probability mass functions for the scaled and

shifted random variables x', X', x", and X".

Equations (14), (26), and (39) follow after observing that the logarithms of" the probability distrilmt.ions in Eqs. (10),

(22), and (35) all consist of two terms, one term a constant and the second term proportional to Ixl p or [A'I _'. The
expected value of the second term can thus be calculated directly from the preceding fornmlas, Eqs. (13), (2.1), and (37),

for the Lp-norm.

Equations (18), (27), and (40) are the central results of this article and are proved by generalizing a technique used in

[4] to show that maximum differential entropy with constrained second moment is achieved by a Gaussian distribution.

If x and x_(p,=-) both have Lp-norm Mp{x}, then for p < oc,

h{x;(p, Z)} = - j( f;(x; tz, Z)log[f; (x; p, E)] dx

= f; (x;/l, Z)log[_;(p, Z)] -t- dx
p itP

--- f(x) Iog[c_p(/z,--')]-t- P _-

= - Jz f(x) log[g (x; p, E)] dx (A-2)

The third equality in Eq. (A-2) follows from the assumption that x and x_(/.t, E) have identical Lp-norms, hence ixlp
has the same expectation whether it is averaged over fp(X;#, F.) or f(x). If p = co, the same result, holds: the second
term in the second and third lines of Eq. (A-2) is absent, and the integration over _ is replaced by an integration over

E Cl {Ix[ _< p}. Continuing,

h{x*p(p,--)}-h{z}=-J f(x)log[g(x;IJ,--)]dx+j_ f(x)log[f(x)]dx
nl/(_)>0}

[ I(x) ] dz= f(x)log ig( ; =)

> _ f(x) log[el {1 g(x;P'_)}dx=O (A-3)
- n{f(x)>o} f(x)

83



The inequality in Eq. (A-3) results from the general inequality log[a] >_ log[e](1 - 1/a) for all a > 0, and the last equality

arises becauses f;(x; p, E) and f(x) both integrate to one.

The derivation in Eqs. (A-2) and (A-3) proves Eq. (27). Equation (18) is a special case of Eq. (27) obtained by

setting F. equal to the set of all real numbers. Equation (40) is derived in a similar manner by replacing the integrals

in Eqs. (A-2) and (A-3) with sununations and continuous probability density functions with discrete probability mass
functions.

Equation (33) results from noting that [x;(p, R+)I ¢:_ Ix;(It)l , so the Lp-norms of x;(p, R +) and x_(#) must be
identical. Equation (34) comes fi'om the fact that the constant scale factor a_(p, R +) for ]_(x; g, R +) in Eq. (22) with

E = R + is exactly half the corresponding scale factor for f_(x;p) in Eq. (10). This accounts for a difference of log[2] in
the first terms in their respective expressions for differential entropy. The second terms must be equal by the previous

observation linking them to their respective Lp-norms.

To derive Eqs. (46) and (47), let a = e -_/" and replace E with I or I + in Eqs. (36), (37), and (38) to obtain

, _ _ 2 l_l+aAI(#'/) = e-lillu =2 ai-1- 1-a 1-a
i=-oo i=0

_Bi (_, I) = Iile-/_l/" = 2 ia' -- (1 - a) 2
i=-oo i=0

• EAoo(p, I) = 1 = 2[_J + 1

Ii1_<_,

M_(/_, I)= sup Iil = LuJ (A-4)
Ii1_<_

and

A;(p'I+)= Ee-lil/u= Eai - _1 1- a
1 a 1-a

/=1 /=1

* E • -- apB, (p, I+) = Iile-I_l/u = ia' (1 - a) 2
i=1 i=1

A'(" ' = E 1= b.J
l<i<U

ML(p,I +) = sup Iil = [_J (A-5)
l<i<u

where _uj is the integer part of p. The entropy expressions in Eqs. (46) and (47) follow algebraically upon substitution

of Eqs. (A-4) and (A-5) into Eqs. (37) and (39) and solving for the entropy in terms of the corrcsponding Lv-norm.

Equation (50) results from calculating the conditional probability density f(xlX ) of x given X, then averaging over X:
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1, if Ix - X I < 1/2 (1, if X= [x+l/2J
f(alX ) = =

0, if Ix - X I > 1/2 0, if X# Lx+l/2J

oo

:(,)=E
i "= -- oo

F(i)f(zlX = i) = F(Lz + 1/2J) (A-6)

Equation (51) results from breaking up the defining integral in Eq. (1) for the differential entropy into a sum of integrals
over unit intervals,

j_- £ f'+'"h{z} = - f(x) log[f (x)] dz = - f(z) log[f (z)] dz
cxz i:--c_ di--1/2

oo fi+1/2 cx=,

= -E ai-1/2 F(i) log[F(/)] dx = -E F(i) log[F(/)] = H{X} (A-7)
i=- c,a i=-oo

Equation (52) is derived by considering the cases of even and odd values of p separately. In tile first case, when p is ev,m,

P

r_O

= _ E{X_-_} - (A-S)
v+l

r_0

r even

because

2-"

E{u_ } = r + 1'

0,

if v is even

if r is odd

(A-9)

Thus, since X p-_ = ]XlP-_ when p and r are both even,

2_ p p-2

E{IX + ,,,I_} - p+ 1 +
r even

--i*

(A-10)

In the second case, when p is odd, tile derivation begins by writing

IX + ui = Ixl + w (A-11)

where
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+u, X_>I
w = Jul, X = 0

-u, X_<I

(A-12)

This decomposition is valid because X is integer valued. The conditional moments of w are

E{wrlX}= /¥]'

0,

if r is even or if r is odd and X = 0

if r is odd and X¢0

(A-13)

Thus,

p

: Z _(,)E(_)I'l'-_ _: '_÷_(0)_,_x=o_
i_0 r=0

= Z F(i) _ Ii1'-" r +---T+ F(O)--p+l
i_O r=O

r even

p-1 2_ _

p+l
r=0 i_0

r even

p-1

Z
r----O

r even

(A-14)
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This article briefly describes a set of compressed, then reconstructed, test images

submitted to the CRAF/Cassini project as part of its evaluation of near-lossless
high-compression algorithms for representing image data. A total of seven test

image files were provided by the project.

The seven test images have been compressed, then reconstructed with high qual-

ity (root-mean-square error of approximately one or two gray levels on an 8-bit gray
scale), using discrete cosine transforms or Hadamard transforms and efficient en-

tropy coders. Tile resulting compression ratios varied from about 2:1 to about 10:1,

depending on the activity or randomness in the source image. This was accom-
plished without any special effort to optimize the quantizer or to introduce special

postprocessing to filter the reconstruction errors.

A more complete set of measurements, showing the relative performance of the

compression algorithms over a wider range of compression ratios and reconstruction
errors, shows that additional compression is possible at a small sacrifice in fidelity.

I. Introduction

This article briefly describes a set of compressed, then

reconstructed, test images submitted to the CRAF/

Cassini project as part of its evaluation of near-lossless

high-compression algorithms for representing image data.

A total of seven test image files were provided by the

project. Five test images (dl, f2, h2, jl, and 12) are star
fields from the Hubble Space Telescope, and two images

(saturnl and saturn2) are views of Saturn from Voyager.

Three of these original images are shown in Figs. l(a),

l(b), and l(c). The dimensions of the Hubble images and

the Saturn images are 256 x 256 and 800 x 800, respec-

tively. All images are represented by &bit pixel values in

the range 0 to 255.

A total of 12 compressed/reconstructed images were re-

turned to the project, as listed in Table 1. Three of the

reconstructed images (marked by arrows =¢, in Table 1)

are shown in Figs. 2(a), 2(b), and 2(c) for comparison
with the originals. Each of the seven test images was

compressed using an algorithm that produces high qual-

ity reconstructed images (left-hand portion of Table l)
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with a root-mean-square error (RMSE) of about one gray
level. Alternate compressed/reconstructed image versions

(right-hand portion of Table 1) were also provided for five

of the seven test images. Three of these alternate images

show how much additional compression is possible at a

small sacrifice in image fidelity, and the other two alter-

nate images illustrate the effectiveness of a different com-
pression algorithm, which is simpler to implement on the

spacecraft.

In Table 1, the RMSE is computed in absolute units on

an 8-bit gray level scale. The quoted bit rate is the number

of bits per pLxel required to encode the compressed image
before reconstruction. The compression ratio is calculated

as 8 bits divided by the bit rate.

II. Description of the Compression System

The specific algorithms used to compress, then recon-
struct the twelve images listed in Table 1 can be described

with reference to the block diagram in Fig. 3. The vari-

ous blocks in this diagram are described in the following
sections.

A. Data Transform/Inverse Data Transform

A discrete cosine transform (DCT) was applied to ob-

tain ten of the twelve compressed/reconstructed images.

The DCT is near-optimal for a wide variety of images,

and is fast becoming an industry standard for high com-

pression. The DCT was calculated using floating point
arithmetic and applied to 8 x 8 sub-blocks of the image.

A tladamard transform (tIT), also applied to 8 x 8

blocks, was used for the remaining two compressed/
reconstructed images. The HT is generally not as effec-

tive as the DCT, but it performed reasonably well for the

seven test images. The HT is simpler to implement than

the DCT, because it can be computed with integer arith-
metic and without multiplications.

Mathematically, both transforms are defined as unitary

transformations on each 8 x 8 block of data. The image

array X is decomposed into 8 x 8 blocks X I J, i.e., X =
[XIJ], and the array of transform coefficients T is built

fi'om 8 x 8 blocks T zJ, i.e., T = [TH]. The blocks of

transform coefficients are given by

1 CXHC T for DCT
T IJ = g

1
-g HXIJ H for tIT

where tile 8 x 8 matrices C = [co] and H = [hij] are
defined by

_ i(2j+l
Cij _--

1

i=1,2,3,4,5,6,7

j=0,1,2,3,4,5,6,7

i =0, j=0,1,2,3,4,5,6,7

H

1 1 1 1 1 1 1

1 1 1 1 -1 -1 -1

1 1 -1 -1 -1 -1 1
1 1 -1 -1 1 1 -1

1 -1 -1 1 1 -1 -1

1 -1 -1 1 -1 1 1

1 -1 1 -1 -1 1 -1

1 -1 1 -1 1 -1 1

1

-1

1

--1 = HT
1

--1

1

--1

Both the DCT and tile liT are exactly invert ible in

principle. The inverse transform fornmlas are simply:

1 cTTIJ C for DCT

X IJ = "8

i HTJJH for liTg

Both the DCT and lIT can be implemented with fast
algorithms requiring fewer arithmetic operations than di-

rect implementation of tile matrix multiplications ill the

above expressions. The DCT requires real multiplications

and additions, whereas the tIT requires only integer ad-

ditions and no multiplications. For this study, the I)CT's

real arithmetic was approximated by 32-bit floating point

multiplications and additions, whereas integer arithmetic
nmst generally be substituted in practice. Integer approx-
inaations in the computation of the transform coelficients

can produce additional errors in the reconstructed images.

Transforming a block of data does not change its ill-
formation content. Useful transforms concentrate most of

the data's energy into a small number of transform coeffi-

cients. Low-energy transform coefficients can be encoded
with a small number of bits.

B. Quantizer/Dequantizer

Tile DCT produces real transform coefficients, which of

necessity must be quantized to a finite number of bits. The

IIT produces quantized coefficients, but the quantization
is impractically fine: tile transform coefficients have eight

times the dynamic range and one-eighth tile g,'anularity of

the input, requiring six extra bits to represent exactly. So

additional quantization is also performed for the lIT.
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Once the transform coefficients have been quantized,

the dequantizer in Fig. 3 can only reconstruct an approxi-
mate version of the true coefficients, and the inverse data

transform can no longer regenerate the exact original im-

age. Except for the possible errors (noted above) in com-

puting the transform coefficients, quantization of the com-
puted coefficients is the only step in Fig. 3 that intro-
duces errors in the reconstructed image data. The choice

of quantization coarseness and uniformity thus sets the fi-
delity of the reconstructed image. This choice also limits

the extent to which the entropy encoder can compress the

image.

A uniform quantizer was used for all twelve of the com-

pressed/reconstructed images. Mathematically, the out-

put of the quantizer is an array of 8 x 8 blocks, Q = [QtS],

where each block, Qm = [Q[S], is obtained from tile 8 x 8

block of transform coefficients, T 1"I = [T_], as

where q is the quantizer step size and [aJ is the largest

integer less than or equal to a. This uniform quantizer is

actually "triply uniform." Not only are the quantization
levels for each transform coefficient, equally spaced, but the

quantization step size q is the same for all 64 coefficients
within each 8 x 8 block, and the step size does not change

from block to block. A step size of q = 4 was used for nine

of the twelve images, and a coarser step size of q = 8 was
used for three of the alternate images.

Nonuniform quantization rules are available [1,2] to

match the quantizer to the human visual response by

selectively quantizing low-frequency DCT or tIT coeffi-

cients more finely than high-frequency coefficients. Simi-

larly, other algorithms can adapt the quantizer to the local
statistics of the data on a block by block basis, ttowever,

such quantizers have so many adjustable parameters that a

nonuniform quantizer optimized for a small set of test im-

ages would not fairly reflect the performance of the quan-
tizer for untested images. Research is ongoing to find uni-

versal nonuniform, adaptive quantizers that consistently

outperform the uniform quantizer.

C. Entropy Encoder/Entropy Decoder

The entropy encoder losslessty encodes the array of

quantized transform coefficients Q into a bit stream b

with bit rate approaching the entropy per coefficient of

Q. Several types of highly efficient coders are available for

this purpose. Among these are the Gallager-van-Voorhis-

Huffman (GVH) coder [3], a variant of IBM's arithmetic

Q-coder [4] being developed for the Joint Photographic Ex-
perts Group (JPEG) standard [2], and a baseline tIumnan
coder for this same standard. Variations of these coders

were used to compress, then reconstruct the images listed

in Table 1.

The first step in all three coding schemes is to ar-

range the quantized transform coefficients QIJ = [Q/jJ]

into an ordered sequence, starting with the DC coefficient

(i = j = 0) in the upper left-hand corner of the trans-
formed block. The remaining 63 coefficients (AC coeffi-

cients) are ordered in some fashion, generally via a zigzag
readout starting at the upper left-hand corner and working

toward the lower right-hand corner. This zigzag sequence

arranges the AC coefficients in increasing order of spatial

frequency.

The GVtt coding scheme is derived based Oll two obser-
vations on the quantized AC and DC coefficients. First,
the AC coefficients and the differences between adjacent

DC coefficients have two-sided geometric distributions.

Second, runs of zeros occur frequently in the zigzag se-

quences of AC coefficients, especially at high compression
ratios. By extending a result originally shown by Gallager
and van Voorhis, a near-optimal adaptive coding scheme

for prefix coding the two-sided geometric source is derived,
avoiding both binning calculations and the tIuffman tree

generation algorithm. Instead, this scheme estimates the

local activity of each 8 x 8 block by counting the num-
ber of zeros in the block or in some preceding blocks, and

adaptively encodes the transform coefficients using simple

pipelined table lookup operations. An optional runlength

code can also be used to encode runs of zeros in the zigzag

sequence of AC coefficients.

The Q-coder is a lossless, binary entropy coder, devel-

oped by researchers at IBM, that efficiently impleluents an

Elias code [5] on an input bit sequence. A coarsely quan-
tized approximation to the real interval [0,1], or a scaled

version thereof, is recursively subdivided into two sections,

whose sizes are proportional to probability estimates that

the bit currently being coded is a 0 or 1. By dynamically

updating these estimates using a finite-state machine, the
Q-coder adapts to input data statistics (unlike a IIuffman
encoder, which requires statistics before coding), which

makes it both robust and efficient. A coding model forms

a binary sequence from a raster-scan ordering of the 64

quantized DCT or IIT coefficients in each block. _'or each

integer, an equal-to-zero flag bit, the sign bit, the position
of the most significant bit, and then the least significant

bits are sent through the Q-coder. Runlength coding was

not performed because the small quantizer step sizes used

make it unprofitable. A simple model, using only [2 prob-
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ability estimates, each of which is a 5-bit number (state),

was used instead of the complex model in Section 8 of [2]
that requires 252 estimates. Negligible bit rate reductions

are expected with the latter model for the images tested.

The output sequence length is very close to a value calcu-

lated from the input stream entropy. Since only additions,

subtractions, and comparisons are utilized by a Q-coder,

it is simple and fast in practice. The particular variant

implemented is described in Section 12 of [2].

The Joint Photographic Experts Group of tile Inter-

national Standards Organization/International Telegraph

and Telephone Consultative Committee (ISO/CCITT) [2]
is currently developing an international standard for still-

image compression. In its baseline version, the proposed

algorithm consists of an 8 x 8 DCT, coefficient quantiza-

lion, and tluffman or arithmetic coding. This scheme pro-

vides a near-lossless, high-compression image coding capa-
bility, which preserves image fidelity at compression rates

competitive or superior to most known techniques. Tile

DCT's 64 coefficients are independently uniformly quan-

tized with a different step size for each coefficient. The

DC component is differentially encoded, and the AC com-

ponents are runlength encoded. Finally, some of the most

significant bits of each resulting code are further encoded

with a variable length code; the remaining bits are trans-
mitted as they are. In the case of Ituffman encoding, the
JPEG default tables were used. The tables for the Ituff-

man codes can be easily customized to adapt to the par-

ticular image source of interest.

Tile bit rates listed in Table 1 are the bit rates achieved

by a variant of the Q-coder. The GVH and JPEG coders

achieve comparable bit rates averaging 0.2 to 0.3 bits per

pixel higher than the Q-coder for tile images in Table 1.

D. Noiseless Channel

Because the entropy code is lossless, the entropy de-

coder is able to reconstruct an exact replica of the quan-
tized transform coefficients, given the compressed files of

coded bits. However, if the channel in Fig. 3 were not

noiseless, the decoding process would be severely disrupted
and errors might propagate wildly.

E. Preprocessing and Postprocessing (Not

Implemented)

Tile original image data supplied by the project were

actually obtained by preprocessing 12-bit data available

from the cameras. The 12-bit data were subjected to a

square-root operation, then quantized to 8 bits. No addi-
tional preprocessing was performed on the 8-bit data be-

fore the transform operation depicted in Fig. 3. The 8-bit

data provided by the project were considered to be the
original image data for the purposes of the tests reported
here.

Some sort of postprocessing is often desirable, follow-

ing tile inverse data transform, to nlake the reconstruc-

tion errors less noticeable. Postprocessing call be ap-

plied to remove visually disturbing blockiness in images
that have been highly compressed by block-transform tech-

niques. No such postprocessing was performed for any of

the twelve compressed/reconstructed images, because it

would unfairly mask the true efficacy of the compression
algorithms.

A crude form of nonoptimum postprocessing actually
did take place after the inverse transform, because the out-

put values had to be quantized to 8 bits to fit. the original

image format. This quantization step should be skipped or

deferred if the output data are subjected t.o further post-

processing (such as removal of the square-root operation

mentioned above).

i11.Additional Performance Results

The twelve reconstructed images listed in Table 1, in-

cluding the three images shown in Figs. 2(a), 2(b), and

2(c), were chosen to reflect the desires of the project to ob-

tain compression ratios in the range of about 2:1 to about

10:1 with essentially zero reconstruction error. A more

complete set of measurements showing the relative perfor-

mance of the compression algorithms over a wider range
of compression ratios and reconstruction errors was also

obtained. These results are plotted in Figs. 4(a), 4(t)),
4(c), 5(a), 5(b), and 5(c) for the three images shown in

Figs. l(a), l(b), and l(c), using DOT-based algorithms.

Figures 4(a), 4(b), and 4(c) show the bit rate (bits per

pixel) of the compressed images as a function of the IIMSE

distortion, and Figs. 5(a), 5(b), and 5(c) show the cor-
responding compression ratios. In these figures the bit.

rates and compression ratios achieved by the three entropy

coders are compared with each other and with an approx-

imate bound based on the estimated entropy of the quan-
tized DCT coefficients. This entropy "bound" is derived

assuming stationary statistics throughout the image; it can

sometimes be beaten by algorithms capable of adapting to
locally varying statistics.

IV. Summary

The seven test images have been compressed, then re-

constructed with high quality (RMSE of approxitnately
one or two gray levels on an 8-bit gray scale) using DCT-

or liT-based schemes and efficient entropy coders. The re-
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sulting compression ratios varied from about 2:1 to about

10:1, depending on the activity or randomness in the
source image. This was accomplished without making any

special effort to optimize the quantizer or to introduce spe-

cial postprocessing to filter the reconstruction errors.

A more complete set of measurements, showing the rel-

ative performance of the compression algorithms over a

wider range of compression ratios and reconstruction er-
rors, shows that additional compression is possible at a

small sacrifice in fidelity.
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Table 1. Ust of original and compressed/reconstructed lest Images. Arrows :=_ denote the three images

shown In Flgs. 2(e), 2(b), and 2(c).

Original

images

Compressed/Reconstructed

images a
Alternate compressed/

reconstructed images b

RMSE, Bit rate, Compression RMSE, Bit rate, Compression
absolute bits/pixel ratio absolute bits/pixel ratio

dl 1.19 1.50 5.33 -- -- --

f2 1.15 1.15 6.96 -- -- --

h2 1.16 1.21 6.61 (H) 1.18 1.25 6.40

jl 1.19 3.77 2.12 (D) 2.33 2.56 3.12

12 1.19 2.04 3.92 :=_ (D) 2.25 1.10 7.27

saturnl 0.97 1.31 6.11 ==_ (D) 1.43 0.75 10.67

saturn2 ::_ 0.87 0.82 9.76 (H) 0.95 1.00 8.00

a Using Q-coder and DCT with quantization step size q = 4.

b Using Q-coder and either DCT with quantization step size q = 8 (D) or llT with step size q = 4 (tt).
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ORIGINAL PAGE

BLACK AND WHITE PHOTOGRAPH

Fig. 1. Original test Images for CRAF/Casslnh

(a) Hubble Image "12," (b) Saturn image

"saturn1," and (c) Saturn image "saturn2."

Fig. 2. Reconstructed test Images for CRAF/

Cassinh (a) Hubble image "12," (b) Saturn image

"saturn1," and (c) Saturn image "saturn2."
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This article describes the software implementation of an emerging standard for

the lossy compression of continuous-tone still images. This software program can be

used to compress planetary images and other two-dimensional instrument data. It

provides a high-compression image-coding capability that preserves image fidelity at
compression rates competitive or superior to most known techniques. This software

implementation confirms the usefulness of such data compression and allows its

performance to be compared with other schemes used in deep-space missions and

for database storage.

I. Introduction

The Joint Photographic Experts Group of the Interna-

tional Standards Organization, together with the Interna-

tional Consultative Committee for Telephone and Tele-
graph, is in the process of developing an international

standard for still image compression with both transmis-

sion and storage applications [1]. In its baseline version,

the proposed algorithm consists of an 8 x 8 discrete co-

sine transform (DCT), coefficient quantization, and en-

tropy coding (Huffman or arithmetic). The complete en-

coder/decoder system is illustrated by the block diagram

in Fig. 1. This scheme provides a tossy high-compression
image coding capability that preserves image fidelity at

compression rates competitive or superior to most known

techniques [2]. Its software implementation is discussed in

the following section.

II. Structure of the Software Implementation

Image samples, or pixels, are read from the original

image file and sent to a two-dimensional DCT module,
which produces 64 coefficients that are independently and

uniformly quantized with a different step-size for each co-

efficient. Then a one-dimensional array is formed by read-

ing the 8 x 8 matrix of quantized coefficients in :_ zig-zag

fashion. The sequence of direct current (de) components--
the first coefficient of each block--is differentially encoded,

while the alternating current (ac) components are run-

length encoded. Finally, some of the most significant bits

of each code are further encoded with a variable-length

code; the remaining bits are transmitted essentially intact.

Flow diagrams of the software encoder and decoder

structures with Huffman coding are shown in Figs. 2 and 3.
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Each of the operations described in the following sections

has been implemented as a separate software module to

allow for future testing of modified modules.

A. Discrete Cosine Transform Module

The forward and inverse two-dimensional DCTs used

in this software implementation are defined by

7 7

x=O9=O

X COS
(2x + 1)urr (2y + 1)vTr

cos

16 16

and

7 7
1

f(=,v) = Z F, v)
u=0v=0

(2x + 1)u_r (2V + 1)vTr
X COS COS

16 16

where C(k) = l/v/'2 ifk = 0, and C(k) = 1 ifk # 0.

This definition is efficiently implemented by using row-

column decomposition [3]. First, the 8 x 1 DCT of each

data column is computed; then the transpose of the re-

sulting matrix is stored as an intermediate result. Finally,
the 8 x 1 DCT of each data row is computed to yield
the desired two-dimensional DCT. This method has the

advantage of considerably reducing the total number of

operations required and of limiting to (2P - 1)(P- 1)

(105 for P = 8) the number of cosine entries to be stored

permanently for a P x P transform. A fast very large-
scale integration (VLSI) of this method is described in [3].

In this article, the software implementation uses floating-

point representation but reduced precision versions have

also been considered. Another approach to reducing the
computational complexity of this step is to consider other

transforms such as the Iladamard transform [4] that can

be performed using integer operations with only a slight

performance degradation [2].

B. Quantization Module

The 64 coefficients produced by the forward DCT mod-

ule are quantized by a uniform or constant step-size quan-

tizer, where the fixed step size may vary from coefficient

to coefficient. This is accomplished by a predefined 8 x 8

matrix specifying the step size Q(u, v) for each coefficient.

The DCT of 8-bit input pixels 1 produces output coeffi-

cients with an 8-times-larger range corresponding to a to-
tal of 11 bits. The quantization matrix can, of course, be

adapted to satisfy different subjective quality measures or
different instrument nonlinearities.

C. Coefficient Modeling Module

Besides using two different Ituffman codes for the dc
coefficient--the first term in the 8 x 8 matrix of coef-

ficients-and the ac coefficients, these two classes are also

differently pre-encoded or modeled.

1. DC Modeling. The quantized dc coefficient is

differentially pre-encoded by computing its difference with

the dc term in the previous block. These differences will

then be entropy coded. Their dynamic range has now
increased to 12 bits.

Two-dimensional dc prediction, which uses both the

previous block's de term and that of the block above, has

also been suggested to take greater advantage of pixel cor-

relation. This feature has not yet been implemented, but
it will be included in future revisions of the software.

The prediction residual is then assigned to one of 12

categories Ci (i = 0,...,11) defined by the base-2 loga-

rithm of the residual's absolute value. The resulting 4-bit
categories are later Huffman encoded. The remaining in-

formation about residual values and sign is encoded by a
simple variable-length-integer (VLI) code, in which each

codeword is Ci bits long [1].

2. AC Modeling. As a first step, the 63 ac coefficients

are reordered into a one-dimensional array by reading the

8 x 8 matrix according to a predefined zig-zag scan path.
This reordering ranks the coefficients in approximate order

of decreasing magnitude.

The one-dimensional array of ac coefficients is modeled

by run-length coding. When a nonzero coefficient is en-

countered, the number of zeros preceding it and its 4-bit
category (one of 11) are concatenated and stored into an

8-bit word for further Huffman coding. The remaining in-

formation about the run-length/nonzero ac pair is encoded

with the same VLI code discussed above. Since only 4 bits
are reserved to represent a run length, only runs up to

15 consecutive zeros can be modeled. Longer runs are ar-

tificially broken by transmitting a special code for a run

1 The software implementation described in this article is designed

for easy extension to higher input, data precision, up to 12 bits per

sample.
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length of 16 zeros. Another special code is reserved to sig-

nal the end of a block, which also prevents the propagation
of eventual channel errors to subsequent blocks.

D. Entropy-Coding Module

Entropy coding is the process that actually performs

tile compaction of the data by reducing statistical redun-

dancy. Either tluffman or arithmetic coding can be used

as an entropy-coding method.

1. Huffman Coding. The dc category and ac run-

length/category pairs are Huffman coded using two differ-
ent codes. These two codes are not a disjoint partition of a

larger prefix code since they contain common codewords.
fIowever, they can be decoded by their relative position

in the serial stream of codewords, which is known on the

receiver side since an end-of-block is always followed by a

dc code, which may then be followed by ac codes or by
an end-of-block code. This solution allows more efficient

encoding with smaller average codeword length at the ex-

pense of a slightly more complex synchronization scheme.

The present software implementation uses two default

look-up tables for the two Huffman codes. The dc table
contains 12 codewords, one for each possible category; the

ac table contains 162 codewords, one for each combination

of 16 run lengths and 10 categories 2 plus the two special

codewords for end-of-block and run-length 16. The maxi-

mum length of ac codewords is constrained to 16 bits.

The dc code tables are specified by an array of 12 bytes,

which contains a properly ordered list of categories corre-

sponding to a lexicographically ordered list of codewords
belonging to a prefix code, and by an array of 16 en-

tries representing the number of codewords of each length.
The ac code tables are similarly specified by an array of

162 bytes, which contains a properly ordered list of run-

length/category pairs corresponding to a lexicographically
ordered list of codewords of a prefix code, and by an ar-

ray of 16 entries representing the number of codewords of

each length. These four arrays completely specify the two
codes and can be used to send code information to the de-

coder or to specify custom tables adapted to the particular

2The number of categories that can actually occur is 11 (for 8-bit
data plus 3-bit expansion due to DCT), but category 0 is unused
since only nonzero ac coefficients need to be encoded.

source of interest. This software inlplementation can also

be used to perform a two-pass encoding in which specific
codes for the image to be transmitted are created by the

encoder during the first pass.

2. Arithmetic Coding. As a higher performance al-

ternative to Huffman coding, arithmetic coding has also

been included in the standard's specification [1]. Arith-

metic coding provides a one-pass scheme that dynamically

adapts to image statistics. For this reason, it has a gener-

ally superior performance [2] to the nonadaptive Huffman
coding chosen for the standard that requires image statis-

tics information before coding. Furthermore, unlike tluff-

man coding, arithmetic coding does not always require at

least one bit per data sample.

III. Conclusions

This article described a software implementat_ion of a

DCT-based lossy compression algorithm suitable for trans-

mitting images from deep space and for storing images in

databases. This software is now available for testing and

for measuring compression and reproduction-quality per-
formance on various instrument sources of interest. The

compression procedure is executed by running the encoder

program, which reads the original raster-scanned image--

with 8-bit-per-pixel gray-scale resolution--to produce a

compressed binary-file image and to compute the compres-
sion ratio. Different compression ratios can be obtained by

changing the quantization table or the arrays specifying

the Huffman codes. The decoder program, in turn, reads

the compressed image and produces the reconstructed im-
age in the same format as the original. Very satisfying re-

production quality has been obtained in preliminary tests

described in [2].

In the standard considered in this article, practical
hardware realization issues have been carefully evaluated

to yield designs suitable for VLSI implementation. A com-
mercial VLSI chip set based on this algorithm is already

available [5]. Beyond improvements in performance or re-
ductions in complexity that may be possible for specific

deep-space instrument applications, the main challenge

will be to demonstrate that this algorithm can be realized

in a space-qualified version.
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This article discusses the performance characteristics of certain algebraic geo-

metric codes. Algebraic geometric codes have good minimum distance properties.

On many channels they outperform other comparable block codes; therefore, one
would expect them eventually to replace some of the block codes used in commu-

nications systems. This article suggests that it is unlikely that they will become

useful substitutes for the Reed-Solomon codes used by the DSN in the near fu-

ture. However, they may be applicable to systems where the signal-to-noise ratio is
sumciently high so that block codes would be more suitable than convolutional or
concatenated codes.

I. Introduction

In their 1982 paper [1], Tsfasman, Vladut, and Zink

showed that, by using algebraic curves, one can construct
codes that lie above the Varshamov-Gilbert bound. These

codes perform better than other comparable block codes

on many channels. This important discovery led to a resur-

gence of interest in geometric, or Goppa, codes. Most

of the research in recent years has focused on developing

practical decoding algorithms. For an account of these ef-

forts, refer to [2,3]. This article discusses some of the per-

formance characteristics of certain algebraic geometric
codes. For the reader's convenience, some of the basic

ideas are developed in Section II as an introduction to the

more technical papers in this field.

II. Definition and Basic Properties

Let Fq be the field of q elements (q = p', p prime) and

Fq x be the set of nonzero elements of Fq. To construct the

projective space pr over Fq, let V = Vr+: be the vector

space of (r + 1)-tuples of elements of Fq, and V* = V\0

that is, V with tile origin removed). On V* define tile
equivalence relation

[=o,. [,jo,...,u,]

if yj = Axj, for all j and some A E Fq x. Tile quotient space

V*/,._, where equivalent elements are identified, is the pro-

jective space P_ over Fq. A point x E P_ is represented
by x = [xo,..., x_] (of course, not uniquely), and xi's are

called the homogeneous coordinates of x. For many geo-
metric problems this space is more convenient to use than

the Euclidean space Fq _. There is a way of translating

statements about subsets of Euclidean space into those of
the projective space, which is described next.

First, embed Fq r into V* by

i(xl .... ,xr) ----[1, Xl ..... xr]

Then, to a subset S of Fq r, assign the image S of i(S)

in P_. This means that, in terms of the homogeneous
coordinates, i.e., in V', S is represented by the cone
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Thus, statements about the subsets of Euclidean space can
be translated into statements about those of the projective

space. In particular, notice that points in Euclidean space
become rays through the origin and that lines in Euclidean

space become two-dimensional planes through the origin
in V'.

To see the value of this translation, consider the special

case r -- 2, i.e., the projective plane, p2 may be regarded

as Fq 2 with a line and a point at infinity added to it. The
line is the set {[0,1,x2]} and the point is [0,0,1]. Let S and

T be two parallel lines in the plane Fq 2, as defined by the

equations

S:axl+bx2=c and T:axl+bx2=c'

Then, the intersection of S* and T* in V* is the line de-

fined by

axl + bz2 = 0 and Xo =0

Thus, S and T intersect at the point [O,1,-a/b] of p2. So

an important difference between Euclidean space and the

projective space is that in the latter space, all lines inter-
sect. Since many problems in geometry can be reduced

to problems of intersections, it makes more sense to work
in the projective space and avoid the exceptional case of

nonintersecting or parallel lines.

Let f(zl,x2) = _aijxlix2 j be a polynomial in two

variables of degree e. Then, homogenize this polynomial
by adding the variable xo and considering the homoge-

neous polynomial

F(xo, xl, z_) = _ aUXo'-i-_xliz2 j

For the set Z(f) = {(*,,.2)lY(*,,x_) = 0}, the pro-

cedure of going from Euclidean space to the projective

space (or to V') amounts to going from Z(f) to Z(F) =

{[Zo,Zl,z2]lr(zo,Zl,x2) = 0}. It is convenient for this
application to consider only polynomials F satisfying a
certain technical property (called nonsingularity) that will

be described at the end of this section.

Let F and G be homogeneous polynomials of degrees e
and m in three variables. For a subset S, denote its cardi-

nality by [S[. Then [Z(F)NZ(G)[ is bounded by era. It is

actually equal to em if the intersections are counted with

multiplicities (for example, tangency has multiplicity two,

etc.) and allow points to have coordinates in the algebraic

closure of Fq. These more technical points will not be dis-

cussed here. Note, however, that if F or G is a product of

linear polynomials, then the assertion that [Z(F)CI Z(G)[
is bounded by em follows from the fundamental theorem

of algebra.

Now assume that a linear space L (over Fq) of functions

on the subset Z(F) of p2 and a subset S = {_1,-..,_,} of

Z(F) are specified. Consider the mapping

p:L--_Fq" where p(C)= (G(_),...,C(_,,))

Then, the image of/a is a linear subspace of Fq n, and is,

therefore, a code. In order to analyze this code, some con-
trol over the linear space L must be exercised. Here alge-

braic geometry provides "naturally" defined linear spaces
L, and the parameters of the corresponding code may be
evaluated. Note also that certain Reed-Solomon codes may

be defined in a similar manner. In fact, if L is the space of

all polynomials of degree less than k and Fq = {_1,..., _q },
then an extended Reed-Solomon code is the image of the

map p : L --+ Fqq, where p(f) = (f((1),---,f(_q))- This
code has parameters (q, k, q - k + 1) and is a maximum

distance separable code.

Let R = Fq[Zo, Xl, x2] be the vector space of polynomi-
als in three variables with coefficients in Fq, and let P_

be the subspace spanned by the homogeneous polynomi-

als of degree m. In this case (i.e., r = 2), Z(F) is called a

plane curve. It is necessary to construct a linear space of

functions on Z(F) from Rm. Notice that for G E Rm

G(_:_o, )_z_,)_z2) = a'G(zo, z_, z2)

so that G is not a well-defined function on Z(F) or p2.

There are two ways of avoiding this difficulty:

(1) Define the value of G at a point z of Z(F) or p2 to

be G(zo, x2, x_) where the representative [Xo, x2, z2]
of z is selected so its first nonzero coordinate is 1.

(2) Fix a homogeneous polynomial H of degree m with

the property that H(_i) _ 0 for all (i E S. Then
G/H is a well-defined function on Z(F).

With either alternative, l_rn may be regarded as a linear

space Lm of functions on Z(F), and, therefore, the code

is denoted by C(F, S). One can determine the parameters

(n, k, d) of this code under some additional hypotheses.

Two polynomials G and G' E Rm determine the same

function on Z(F), i.e., the same element of L,_ if, and

only if, their difference is a multiple of F. Assuming that

the degree e of F is less than m, the dimension of L,_ is

expected to be

104



dim (Lm) = dim (t-_) - dim (l-t.._.)

since multiplication by F maps Rm-_ into Rm. It is easy

to see that dim (IL_) = (1/2)(m+ 1)(m+2). Substituting

and simplifying yields

dim(Lm)=c-g+l (1)

where the quantities c =em and g = (1/2)(e-1)(e-2) are

called the degree of Lm and the genus of the plane curve

Z(F), respectively. Formula (1) is a very special case of the
celebrated Riemann-Roch theorem. The above discussion

should take some of the mystery out of this useful formula.

Next, assume that n > era. To determine the pa-

rameters of the code C(F,S), suppose that p(G) = 0,

then the intersection Z(F)13 Z(G) has at least n > em

points. But since G has degree m and F has degree e,
IZ(F) f'l Z(G)I < era. Therefore, G = 0 and the map/_ is

one to one. This implies that the code C(F, S) has rate

p = k/n = {era- (1/2)(e - 1)(e- 2) + 1}/n

Tile minimum distance d of the code is the minimum num-

ber of nonzero entries of (G(_I),...,G(_n)) as G ranges

over the nonzero elements of Lm. As noted, IZ(F)f'IZ(G)I
does not exceed era, and therefore

d>n-em

Itaving defined the code C(F,S), it is natural to try
to understand its dual code C(F,S)* with parameters

(n, k*, d*). The computation of the parameters of C(F, S)*

involves introducing more algebraic geometry, and will not
be discussed in detail. The result is:

k* =n-c+g- l =n-k andd* >c-2g+2

Here, only a restricted class of algebraic geometric codes

was considered. While there are more general construc-

tions, the special case considered will suffice for the prob-
lems at hand.

Finally, tile nonsingularity property mentioned earlier

must be clarified. For a homogeneous polynomial F, Z(F)
is nonsingular if, for every i, the equations

{Fi = 0 and OFi/Oxj = 0 for j # i}

do not have a solution, ttere, Fi is the polynomial ob-

tained from F by setting zi = 1. Since for each i, this

is a set of three equations in two unknowns, the nonsin-

gularity condition is generically satisfied. For example, if

the polynomial F satisfies this condition, then it cannot
be written in the form F = GH with G and H homoge-

neous polynomials of positive degree. In fact, the nonsin-

gularity condition will not be satisfied, since Fi = 0 and

OFi/Oxj = 0 on Z(F) fl Z(G). On the other hand, Z(F),
where F(xo,Xl,X2) = Xo t + xl t + x2 t, is nonsingular for

those values of t and p which are relatively prime.

III. Construction and Performance of Certain
Codes

It is clear from the expressions for k and d that, to

construct "good" codes, one should find polynomials with
IZ(F)I as large as possible, so that d can be large, while

the symbol size is fairly small. [Recall that tZ(F)[ means

cardinality of Z(F) as a subset of P_ and not V*.] There

is an important inequality (the VCeil-Serre bound) relating

the size of IZ(F)I to e, namely,

IZ(F)I _<q + 1 + g[2v_ ] (2)

where [y] denotes the largest integer not exceeding y. This
bound is sharp in the sense that there are plane curves for

which the equality in Formula (2) is achieved. In order to

understand the basic properties of the algebraic geometric

code C(F, S), compute IZ(F)I. In the following example,

IZ(F)I is computed for a class of homogeneous polynomials
in three variables:

Example: Let q = pab and r = pa, then q-1 = (r- 1)/

for some integer t. Consider the Fermat curve defined by

F(zo,zl,zD = zot + zlt + z2 t (3)

For such F

IZ(F)I = 3t + (r - 2)t 2

Consider the mapping X(() = (', which is a homomor-

phism of Fq × into itself. Since _-t_ = _q-l+t = _t, _t lies

in F_ x. (Note Fq D F_.) Therefore, X is actually onto
F_ × and its kernel has order t. First, consider solutions

to F = 0 with Xo = O, then one may assume xa = 1.

It follows that there are exactly 3t solutions with exactly
one coordinate zero. Next, set Zo = 1, and seek solutions

where all the coordinates are nonzero. For -1 # _ E F_ x ,

the equation X(() = -c_ - 1 has t solutions in Fq ×. Since
,7t = c_ also has t solutions, (r- 2)t 2 solutions were ob-

tained with all the coordinates nonzero, tlence, there are

3t+(r-2)t 2 solutions to F = 0 in Fq. For a = b and

t = r + 1, IZ(F)I = r3 + 1. Since g = ,'(r - 1)/2, and the
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right-hand side of Formula (2) is also r3+ 1, the inequality
of Formula (2) is sharp in the sense described earlier.

This example will suffice for investigating some of the

properties of algebraic geometric codes. The general phe-
nomenon is that "good" algebraic geometric codes, com-

parable in rate and word size to Reed-Solomon codes, have

larger minimum distance and smaller symbol size. For ex-
ample, setting a = b and p = 2 in the example above, one

obtains algebraic geometric codes of rate p with minimum
distance d and word length L (= n x symbol size) given

by (approximately)

d _ (1 -- p)231 and L _ (2a)23_

In fact, note that em >> g, n _ IZ(F)l _ 2aa, and d

(1 -p)n to obtain the above estimates. For a Reed-

Solomon code of rate p

d' _ (1 - p)2 N and L' .._ n2 N

from which the claim follows.

To estimate the parameters of several more specific

codes, one considers C(F,S) where F(xo,xl,z2) is as in
the above example, p = 2, a = b = 3, and IZ(F)I = 513.

Consider the following codes:

(1) C(1): n = 504, e = 9, and m = 17, so that k/n =

1/4 and d = 351

(2) C(2): n = 504, e = 9,
1/2 and d = 225

(3) C(3): n = 504, e = 9,

7/8 andd= 36

and m = 31, so that k/n =

and m = 52, so that k/n =

The performance of these codes has been studied and

compared with that of certain Reed-Solomon codes. As-
sume that the comnmnication channel is a binary sylnmet-

ric one, which models a binary-phase shift keyed (BPSK)

modulation system over an additive white Gaussian noise
channel with a hard litniter (hard decision). It is well-

known that a good approximation to the output bit error

probability is

P _ (p/s)_j=u+l ..... n C(n'J)sJ(1 - s)"-j

where n = 504 for the codes C(1), C(2), and C(3), C(n,j)
is the binomial coefficient n choose j, u = (1 + d)/2, and

s = 1- (1-p)t with l the symbol size. Recall also that

the information bit signal-to-noise ratio Eb/No is related

to the bit error probability p by the formula

p = (1/2)Erfc[(kEb/nNo) '/2]

where

Cx)
Zr/c(x) = (2/7r) e-t_dt

The performance of C(1) and C(2) is compared with

Reed-Solomon codes RS(511,127) and RS(511,255), re-

spectively. Note that the comparison is between codes of
similar rates, but that the symbols for the Reed-Solomon

codes are longer---4599 bits, as compared with 3024 bits

for C(1) and C(2). While C(1) performs somewhat bet-

ter than RS(511,127) (about 1/3 dB better), C(2) and

RS(511,255) perform almost identically. The algebraic

geometric code C(3) was compared with the Reed-Solomon
code RS(255,223), which is part of the concatenated code

used for the Galileo spacecraft, tIere again, the perfor-
mance of the codes is very close, but the Reed-Solomon

code has shorter symbol length. Also, note that optimal

decoding was assumed in these comparisons. The results

are given in Figs. 1-3.

The output bit error was also computed as a function of

the channel symbol error probability for C(1). The results

are given in Fig. 4.

Practical encoding procedures for algebraic geometric
codes are not known at this time, and their decoding is
more difficult than that of Reed-Solomon codes. While

much progress has been made on the decoding of these

codes, they cannot always be optimally decoded with al-

gorithms having acceptable complexity (see [2,3]).

IV. Conclusion

Algebraic geometric codes are "good" block codes.
They are the first codes to beat the Varshamov-Gilbert

bound, and on many channels outperform other compa-
rable block codes, tlowever, their performance character-

istics are such that they are unlikely to be useful for the
DSN in the near future. Their most likely application is to

systems where the signal-to-noise ratio is sufficiently high
so that block codes would be generally more suitable than

trellis, convolutional, or concatenated code systenrs. Like

other block codes, algebraic geometric codes can only be
hard decoded at this time. When their soft decoding be-

comes possible, these conclusions will have to be levised.
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Four different arraying schemes that can be employed by the Deep Space Network

are functionally discussed and compared. These include symbol stream combining

(SSC), baseband combining (BC), carrier arraying (CA), and full spectrum com-

bining (FSC). In addition, sideband aiding (SA) is also included and compared

even though it is not an arraying scheme, since it employs a single antenna. More-

over, combinations of these schemes are discussed, such as carrier arraying with

sideband aiding and baseband combining (CA/SA/BC) or carrier arraying with

symbol stream combining (CA/SSC). Complexity versus performance is traded off

throughout the article and the benefits to the reception of existing spacecraft signals

are discussed. Recommendations are made as to the best techniques for particular

configurations.

I. Introduction

As the signal arriving from a receding deep-space space-

craft becomes weaker and weaker each year, the need

arises to devise schemes to compensate for tile reduction in

signal-to-noise ratio (SNR). With maximum antenna aper-

tures and lower noise temperatures pushed to their limits,

the only remaining method to improve the effective SNR

is to "combine" the signals from several antennas. This is

referred to as arraying and it enables the Deep Space Net-

work (DSN) to extend the missions of spacecraft beyond

their planned duration. Another advantage of arraying is

its ability to receive higher data rates than can be sup-

ported with a single existing antenna. As an example,

symbol stream combining was used to array symbols be-

tween the Very Large Array (VLA) radio telescope and

Goldstone's antennas during Voyager's encounter at Nep-

tune [1,2]. That technique increased the scientific return

from the spacecraft by allowing data transmission at a

higher rate. In general, arraying enables a communication

link to operate with, effectively, a larger antenna than is

physically available.

There are various arraying techniques that have been

considered and analyzed ill the past. The purpose of this

article is to functionally unify and compare the various al-

gorithms and techniques by pointing out their relative ad-
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vantages and disadvantages. Antenna arraying can be em-
ployed with any signal modulation format: bi-phase shift

keyed (BPSK), quadrature phase shift keyed (QPSK), con-

tinuous phase modulation (CPM), etc. In this article, the

National Aeronautics and Space Administration (NASA)

standard deep-space signal format is used to illustrate the

different arraying techniques, but the results can be ex-
tended to other formats, including suppressed carriers.

It is well known [3] that the received signals from deep-

space spacecraft take on the following format:

r(t) = Vz2-fisin[wct+Ad(t) Sin(w,ct+O,_)+G]+n(t) (1)

where n(t) is an additive bandlinfited white Gaussian noise
process, P is the total received signal power, wc and 0c

are the carrier frequency and phase, respectively, A is the

modulation index, d(t) is the nonreturn-to-zero or Manch-

ester data, and 5in(w_ct + 0so) is tile square-wave subcar-
rier with frequency w,¢ and phase 0,¢. The received signal

can be rewritten alternatively as

,'(0 = sin(  + + 5in( , t + O,c)

× cos( c + 0,) + n(t) (2)

where Pc and PD are the carrier and data powers and

are given by P cos 2 A and P sin 2 A, respectively. The first
component is the residual carrier, typically tracked by a

phase-locked loop, and the second component is the sup-

pressed carrier which can be tracked by a Costas loop. The

modulation d(t) is given by

d(t) = _ dkp(t - kTs) (3)
k=-co

where dk is the -4-1 binary data and T_ is the symbol pe-

riod. The primary function of a receiver is to coherently

detect the transmitted symbols as illustrated in Fig. 1.

Tile demodulation process requires carrier, subcarrier, and

symbol synchronization. Ideally, the output of the receiver

xk is given by

Xk,ideal _-- v_Ddk + nk (4)

where nk is a Gaussian random variable. In tile sections to

follow, performance of a particular arraying scheme is mea-

sured in terms of its degradation with respect to the ideal

gain that can be attained, which assumes no combining

or synchronization losses. In the simplest case, using two

identical antennas with two separate but identical receivers

to demodulate the received signal, ideally the output of

each receiver would be similar to Eq. (4) and the noise

samples of each stream would be independent. Therefore,

if the symbol streams were properly aligned and added,

the symbol SNR of the combined symbol stream would

be 3 dB higher than the symbol SNR of the individual

streams, resulting in an ideal 3-dB gain.

Typically, however, the carrier, subcarrier, and sym-

bol synchronizations result in signal degradation and the

output of the receiver is more realistically modeled by [3]:

where ¢c, ¢s¢, and ¢,y denote carrier, subcarrier, and sym-
bol phase errors, respectively. It is worth noting at this

point the difference between symbol SNR degradation and
symbol SNR loss. Symbol SNR degradation is defined as

the average reduction in SNR at the symbol matched fil-

ter output due to imperfect carrier, subcarrier, or symbol

synchronization. For example, the SNR degradation due

to imperfect carrier reference is given by

= cos ¢, (6)

where the overbar denotes expectation with respect to the

carrier phase error ¢_. Symbol SNR loss, on the other

hand, is defined as the additional symbol SNt_ needed in
the presence of imperfect synchronization to achieve the

same symbol error probability as in the presence of per-

fect synchronization. The latter is typically larger than

the SNR degradation, but both degradation and loss are
comparable at high loop SNRs [3]. For the purpose of

comparing arraying schemes, this article considers symbol

SNR degradation, which is easier to compute and is more
or less indicative of the error probability performance in

the region of interest. In order to simplify this notation,

rewrite Eq. (5) as follows:

zk = V/-_DC¢C_cC, ydk + nk (7)

where Co, Cse, and C_y denote the carrier, subcarrier,
and symbol "reduction" functions and are given by C¢ =

cos¢¢, C_¢ = 1- (2/rr)l¢,_ I, and C,_ = 1

- (1/2r)l¢,u{ , respectively. Sometimes it is convenient to
use Ct to denote the total degradation given by

G = GG_C,_ (8)

There are basically four different arraying schemes that

can be employed by the DSN. These are symbol stream

combining (SSC), baseband combining (BC), carrier ar-

raying (CA), and full spectrum combining (FSC). In ad-

dition, sideband aiding (SA) can also be employed, even
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though it is not an arraying technique as it employs a sin-
gle antenna. The next sections will functionally discuss

these various schemes and try to clarify their advantages.

Furthermore, a combination of these schemes will be dis-

cussed, such as carrier arraying with sideband aiding and

baseband combining (CA/SA/BC) or carrier arraying with

symbol stream combining (CA/SSC), just to name a few.
Complexity versus performance will be traded off through-

out the article and benefits to the reception of existing

spacecraft signals are discussed.

II. Symbol SNR Degradation Due to
Imperfect Synchronization

Before proceeding with arraying, it is crucial to under-

stand and quantify the individual degradations due to the

carrier, subcarrier, and symbol synchronizations to assess
which of these is the dominant term and how each can

be reduced. The results that follow are well known and

will be used in subsequent sections to compare arraying
schemes.

In the Advanced Receiver II (ARX II) [4], carrier track-

ing can be performed in two ways. The residual compo-
nent of the signal can be tracked with a phase-locked loop

(PLL) or the suppressed component of the signal can be
tracked with a Costas loop. With a PLL, the loop SNR is

given by

_, 1 Pc

p ,r = =  V0Bo
(9)

where Be is the carrier loop bandwidth and a2 is the
C,r

phase jitter in the loop (the subscript c,r refers to the

carrier residual component). On the other hand, with a

Costas loop,

1 PD SL
- (10)

P_'_ - o'_,, NoB_

where Sr is the squaring loss given by

1

& = 1 + [II(2E, INo)] (11)

and Es/No = PDT,/No is the symbol SNR (the subscript

c, s refers to the carrier suppressed component). Note from

Eq. (2) that when A = 90 deg, the residual component dis-

appears and the carrier is fully suppressed. On the other
hand, when A = 0 deg, the signal reduces to a pure sine

wave. Typically both components of the carrier, residual

and suppressed, can be tracked simultaneously and the

carrier phase estimates combined to provide an improved

estimate. This is referred to as sideband aiding and it

results in an improved loop SNR given to a first-order ap-

proximation [5] by

po = + pc,, (12)

Whether sideband aiding is employed or not, the degra-

dation due to imperfect carrier reference is still given by

C-_. Assuming a carrier phase error density function of the

form [6]:

ep¢ cos ¢_

P(¢_)- _,_10(p_) (13)

the carrier degradation, C 2, becomes

-- 1[c =7 1+ 1 (14)

where Ik(x) denotes the modified Bessel function of order
k. Note that the Tikhonov density of Eq. (13) is valid

only in the case of a first-order PLL. It will, however, be
used as an approximation for other synchronization loops,

including the subcarrier and the symbol loops, with the

carrier loop SNR replaced by the SNR of the respective

loop. The degradation C 2 is shown in Fig. 2 as a function

of the ratio of the total received signal power to the one-

sided noise spectral level (i.e., PT/No), in the presence and
absence of sideband aiding. From the figure, it is clear that

sideband aiding can reduce the carrier degradation signif-
icantly when the data power is sufficiently "large," i.e.,

when the modulation index is relatively "high." Further-

more, an "x" has been placed in the figure indicating the

point where the carrier loop SNR drops below 8 dB and

significant cycle slipping occurs. From Fig. 2, the loop
maintains lock at 22.5 dB-IIz with SA, but requires at

least 27.5 dB-Itz without sideband aiding, resulting in a

5-dB higher operating threshold.

Another useful quantity is the average amplitude degra-

dation due to imperfect carrier synchronization, given by

-- 11(Pc)
c_ - (15)

Io(p_)

It will be used in subsequent sections to compute the SNR

degradation of various arraying schemes. As for the sub-

carrier and symbol phase errors, consider two cases, one
where the densities are assumed Gaussian, and the other

where they are approximated by the Tikhonov density of

Eq. (13). Both approximations are expected to agree at
high loop SNRs, but not necessarily at low loop SNILs.

The exact densities of the phase errors are not known and

remain an open problem. For either density,
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where

C,¢ = 1- 2]¢,_[ (16)
IT

1
C,v = 1 - _--_[¢,y[ (17)

C_-"_= 1 - 74[¢,¢[ + ___¢,¢42 (18)

1 _- (19)

14,1= o- (20)

4,-_= o-= (21)

for the Gaussian densities, and a s denotes the variance of

the phase error, i.e., p -- 1/a 2. Now, let p denote the loop
SNR, then

oo

-- 1 ekIk(p) l [(--1) k 1]
I¢1- _r_ro(p)_ k -

k=O

oo

2=_ k2
Io(p) k=0

for the Tikhonov densities (e0 = 1 and ek = 2 for k # 0).
The subcarrier loop phase jitter, a_, in a Costas loop is

given by (Wsc denotes the subcarrier window) [7]:

a'e p.¢ R_'_0) 1 +

Similarly, the symbol loop phase jitter, or,v2, assuming
a data transition tracking loop, is [6]:

2 _ 1 _ 27r2 B, uWsv (25)
a,v P,v R,(E,/No) er f2 (_/-_-_)

where Wsv is the symbol window, R, = 1/Ts is the symbol

rate, and erf(x) denotes the error function. The subcarrier

and symbol degradations, C_c and C_v, are depicted in
Fig. 3 versus the loop SNR for both approximations.

Typically, the DSN operates with a subhertz loop band-
width for the subcarrier and symbol synchronization loops,

resulting in negligible degradation from imperfect subcar-
rier and symbol phase references. In most situations, the

carrier degradation is the dominant term and can be as

large as 0.8 dB for very weak signals, with an 8-dB loop

SNR. Since both approximations yield similar degrada-

tions, the performances of the various schemes in the sub-

sequent sections are derived using the Gaussian model for

the phase errors.

III. Arraying Techniques

As mentioned previously, a 3-dB improvement in sym-

bol SNR is expected, assuming an array of two identical

antennas with ideal synchronization. In this section, the

effective symbol SNR is derived for the various arraying

schemes, assuming L antennas and accounting for imper-

fect synchronization. Moreover, included here is the effect
ofsideband aiding and a comparison of performance versus

complexity for all schemes.

A. Symbol Stream Combining (SSC)

Symbol stream combining is depicted in Fig. 4. Each

antenna tracks the carrier and the subcarrier and performs

symbol synchronization individually. The symbols at the

(22) output of each receiver are then combined, with the ap-
propriate weights, to form the final detected symbols. The

advantage of SSC is that the combining loss is negligible [8]

and is performed in the data rate bandwidth. Moreover,

(23) antennas that are continents apart can transmit their sym-
bols in real or non-real time to a central location where the

symbol stream combiner outputs the final symbols. That,

however, requires that each antenna be able to lock on

the signal individually. The disadvantage of SSC is that

L carrier, L subcarrier, and L symbol tracking devices are

needed, and each suffers some degradation. For "moder-

ate" to "high" modulation indices, the carrier degradation

(24) can be reduced by employing sideband aiding at each an-
tenna. The samples of the signal at the output of the
symbol stream combiner are

L )vk=dk Z_iV/-_Oicos4,,,(1--2'¢,,i]
i=1

x (1-1[¢,vi[)+n_: (26)

where fii's are weighing factors, PDi = Pi sin 2A is the re-

ceived data power at antenna i (Pi is total received power),

and 4,¢i, ¢,d, and ¢_ui are the carrier, subcarrier, and sym-
bol phase errors, respectively, at the ith antenna. There

is negligible loss when combining the symbols (< 0.05 dB)
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and, assuming that each receiver chain has a one-sided

noise power spectral density level Noi , it is straightforward

to show [9] that the variance of n_ is given by

L

o'2_,,= 1 Z/37Noi (27)

The conditional symbol SNR (assuming that the vari-
ous phase errors are known) at the output of the combiner
is defined as

SNR'- (_-g)2
(28)

where _'g is the conditional mean of vk. Using Eq. (27),

SNR' = 2PD1T3 /3i_/PDi/PD1C¢i

N01 L
/3_( Uol/ Uol )

i=1

(29)

where Cti is defined in Eq. (8). Letting/31 = 1 and opti-

mizing/3i's (i = 2,..., L) in order to maximize SNR', one
obtains

,/-_-_ N0a
/3'= V (30)

Plugging back in Eq. (29), one gets

SNR,_ 2PD1T, (i_=1 TiC-i)

N01 L

i=1

(31)

where 7i is defined as

"/i--

P; N0_
PI Noi (32)

where

L

F _ _--_ 7i
i=1

The 7i factors for various DSN antennas are given in

Appendix A for both S-band (2.2 to 2.3 Gtlz) and X-band

(8.4 to 8.5 GIIz). Note that in the absence of any degra-

dation (Cti = 1 for i = 1,...,L), the conditional SNR
simplifies to

L

2PINT, 2Pol T,
SNRi&al - N01 _7i - N01 F (33)

i=l

with F being the "ideal gain factor" obtained at antenna 1,
which will be denoted the master antenna for pure conve-

nience (when Vi = 3'1 for all i, F = L). For two identical
antennas with equal noise temperatures, 71 = 72 = 1 and

the conditional SNR reduces to 4PDITs/Nol as expected,

i.e., an effective gain of 3 dB. The unconditional SNR at

the output of the symbol combiner is obtained by averag-
ing the conditional SNR over the unknown phase errors,

which are embedded in the constant Cti's, i.e.,

SNR -
2PDITs

No1 + E E "r,'r,c,, c

'_-- i,3

F
(34)

where

C_i -- Ct_ C_, C_yi and C,, -- Co, Cxi _"s_i (35)

Because the noise processes make all the phase errors
mutually independent, the computation of the uncondi-

tional SNR in Eq. (34) reduces to the computation of the

first two moments of the various values of C_i, C,_i, and

C, yi. Finally, the SNR "degradation factor" D,_ (in deci-
bels) for symbol stream combining is defined as

( SNR )Dssc = 10log10 \SNRideat

( )i=1 ,,

'*' (36)= 10 log10 F 2

Note that D,,¢ is a negative number that ideally ap-

proaches zero. In general, the larger the D, sc, the better
the symbol stream combining performance. For the case

of a single antenna (i.e., no arraying), D,c measures the

degradation due to imperfect synchronization. Figure 5

depicts Ds,c for the array, of two high-efficiency (ltEF) and

one standard (STD) 34-m antennas as a function of PT/No
of the master antenna, Fig. 5(a), and modulation index,

Fig. 5(by. In this case, the ideal expected gain is 2.6 dB,

but only a fraction of that is attained, depending on the

received PT/No and A. The figures also depict the corre-

sponding carrier, subcarrier, and symbol degradations and
it is clear that the carrier provides the dominant term.
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B. Baseband Combining (BC)

In baseband combining, each antenna locks on the sig-

nal by itself as depicted in Fig. 6. The baseband signals,
consisting of data on a subcarrier, are then combined and

the symbols demodulated. The combining is performed

by the baseband assembly (BBA), which consists of three

elements: the reM-time combiner (RTC), the subcarrier

loop, and the symbol tracking loop. The inputs to the

BBA are analog baseband telemetry signals from L re-

ceivers (L < 8) and the output is a sequence of combined

digital symbols given by

L

x EfliV/'_D/cos_¢i(l-4m[ri l)+n_ (37)
i=l

where m is the ratio of the subcarrier frequency over the

symbol rate and ri is the delay error of the ith RTC loop

(r_ = 0) [10]. Since the BBA employs baseband com-
bining (i.e., combines the signals prior to the subcarrier

loop), only one subcarrier and one symbol tracking loop
are employed and no subscripts are needed for the random

variables ¢_ and ¢,y. The variance of Vk due to thermal
noise is still given by Eq. (27). Again, as with the SSC

scheme, the conditional SNR at the output of the symbol

tracking loop is given by

SNR' "_ _(_'_)2 2PINT, CscC'Y i=l_ fli_/Pni/PmG
= _, = No1 r

(3s)

where the SNR degradation function Ci accounts for the

carrier and delay degradations and is defined as

Ci = C_iC_i = cos ¢¢i(I - 4m [ rl [) (39)

In order to compute tile unconditional SNR at the out-

put of tile symbol tracking loop, Eq. (38) is averaged over
all the phase and delay error processes in the correspond-

ing tracking loops, resulting in

2PD1%
SNR- No1-_'¢C2"Y

i = l .*__

F

(40)

The signal reduction function for the RTC, denoted by
Cr, and given by (1 - 4m I r, I), has the following first
two moments:

)C,, 1 - 8m a,, + 16m2a_

and

(41a)

(41b)

where cry, denotes the variance of the ith loop of the real-

time combiner and is computed to be [10]:

2 Bri

O'ri =

x{ ,  2_1}
[erf (_) erf (_)

(42)

In the above equation, i = 2,..., L, Br, denotes the band-
width of the RTC loops, B,_ denotes the noise bandwidth

at the RTC input (assumed the same in all channels), and

cr? = No, B. (note that _-- 1 and C_1 = 1).

The equations for the moments of Cse and C,y are those

given by Eqs. (16) through (19), with the variances com-
puted using the combined PD/No. Note that under ideal

conditions (i.e., no phase or delay errors in the tracking

loops), all C's are 1 and the SNR reduces to

2PINT,
SNRiae_t - N01 F (43)

as in the symbol stream combining case, Eq. (33). As ex-

pected, both SSC and BC have the same SNR performance
under ideal conditions. Once the unconditional SNR is

computed for the BC scheme using Eq. (40), the degrada-
tion factor is obtained as before, namely,

SNR )Db_ = lOloglo \SNRid,,_I

= 10 log10 ( L )
i=1 ,,J

'c'L rF'

(44)
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Figure 7 depicts the degradation due to baseband com-

bining, Dbc, as a function of both PT/No, Fig. 7(a), and

A, Fig. 7(b), assuming the same array as in the SSC case.
The noise bandwidth of the RTC was set to 132 kttz to

pass the fifth harmonic of the subcarrier with frequency

32.768 kHz. Note from Fig. 7(a) that the subcarrier and

symbol degradations are less than their counterparts in

SSC, Fig. 5(a). Ilowever, there is an additional combining

loss of about 0.2 dB that is not present in the SSC.

C. Full Spectrum Combining (FSC)

Full spectrum combining is an arraying technique where

the signals are combined at intermediate frequency (IF) as

depicted in Fig. 8. One receiver chain, consisting of one

carrier, one subcarrier, and one symbol synchronization

loop, is then used to demodulate the signal. The combin-

ing at IF is two dimensional in the sense that both delay
and phase adjustment are required to coherently add the

signals. Let the received signal at antenna 1 be denoted

by sl(Q. Then from Eq. (1),

sl(t) = 2V/_x sin[wet - 01(/)] (45)

where 0a (t) = 0M (t) + OD (t) + Ooze(t), OM(Q represents the

biphase modulation, 0D (t) is the Doppler due to spacecraft

dynamics, and 0o,c(t) is the oscillator phase noise.

The received signals at tile other antennas are delayed

versions of sl (t) and are given by

si(t) = s(t - ri) = 2X/_i sin[a_¢(t - ri) + Oi(t - rill (46)

for i = 2 .... L, where ri denotes the delay in signal recep-

tion between the first and the ith antennas (rl - 0), and

Oi(t) = 0_(t) + A0i(t). In this case, A0i(t) accounts for
differential Doppler and phase noises, which are typically

"very small." Note that at the RF frequency we, the sig-
nal si(t) can be delayed by -ri and added coherently, as

long as the ri's are known. So combining can be achieved

at RF with only a delay adjustment. Downconverting the

delayed signals to IF (wt denotes the IF frequency) yields

yi(t) = V/-_i sin[wlt - w¢ri + Oi(t - rill

and delaying each signal yi(t) by -ri, gives

(47)

= 2V isin[wzt - wcri + wlri + Ol(l )

(4S)

for i :/: 1. The signal's zi(t)'s cannot be added coher-

ently because the phases are not aligned, due to the factor

(¢zt -wc)ri, even though the data are aligned (OD(t) is

part of Ol(t)). Therefore, an additional phase adjustment

is necessary to add the signals coherently. This example
illustrates that both delay and phase adjustments are re-

quired to add the signals coherently at IF, but that only

a delay compensation is sufficient at RF. For the purpose

of this article, a delay by -v (actually, an advancement)

is used for mathematical convenience. In reality, the "fur-

thest" antenna can be used as a reference and signals from

all other antennas can be delayed accordingly.

Now consider an antenna interferometric pair as illus-

trated in Fig. 9. The signal at antenna i arrives ri see
later than the signal at antenna 1, which will be used as
a reference for mathematical convenience. After low noise

amplification, the signals are downconverted to IF, where

the ith signal is delayed by -ri see. The latter delay con-

sists of two components, a fixed component and a time-

varying component. The fixed component compensates

for unequal waveguide lengths between the two antennas
and the correlator. It is a known quantity that can be de-

termined by measurement. The time-varying component
compensates for unequal propagation length for the two re-

ceived signals. This component is typically precomputed

from the trajectory of the spacecraft and the physical lo-
cation of the two antennas.

The relative phase difference between the signals is esti-
mated by performing a correlation on the resulting signals,

which for all practical purposes have been aligned in time.

At the input to the correlator, the two signals from the
first and the ith antennas are passed through filters with

bandwidth B Hz and subsequently sampled at the Nyquist

rate of 2B samples per see. Mathematically, the sampled
signals are given by

zl(tk) = 2V_l sin[wltk + 01(tk)] + nl(tj,)

and

zi(t_) = 2_"_isin[wltk+(wl--w_)ri+Oi(tk)]+ni(tk) (49)

where i ¢ 1 and nl(tk) and ni(tk) are independent Gaus-

sian random variables with variances _f = NoxB and
,)

_rr = NoiB. It will be shown later that the parameter B

is e_ential in determining the averaging period and, thus,
the combining loss. Correlating the signals (i.e., multiply-

ing and lowpass filtering) yields

[il(tk) : _ COS[¢il(I_k)] -t- nI,il(tk) (50)
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where ¢;1 = (wl - wc)ri + AOi(lk) denotes the total phase

difference between the signals and nt,il, the effective noise,
is given by

nI,il = V/_isin[wItk + ¢i, + Oi(tk)]na(tk)

+ 2V/ lsin[wltk + Oz(tk)]ni(t :)+ nl(tk)ni(tk)

(51)

with effective variance

2 2
Crei

= B(NolPi + NoiP1) + NolNoiB 2 (52)

The correlation is performed in a complex manner (i.e.,

four real correlations) resulting in an additional signal
Qia(tk) given by

Qil(tk) = _sin[¢il(tk)] + nQ,il(tk) (53)

The noise samples nl,il(tk) and nq,il(tk) are uncorrelated
with identical variances as given by Eq. (52). The cor-

relator output can be represented more conveniently in a
complex form as

Zil(tk) = lil(tk) + jQia(tk) (54)

Following the correlation, an averaging operation over

T sec is performed to reduce the noise effect. In that pe-
riod, N = 2BT independent samples are used to reduce

the variance by a factor of N. The SNR at the output of

the accumulator, SNRil, is thus given by

N P_ Pi PI 2T

SNRil = a_-----_- g01 [1 + 1/7i + (BYol/Pi)] (55)

where 7i is as given in Eq. (32). Note that in radiometric
applications [10], the SNR is defined as the ratio of the

standard deviation of the signal to that of the noise, and is

the square root of the SNR defined in the above equation.

Assuming that the correlation bandwidth B is "very large"

(in the MHz range), the signal multiplied by the noise term
(Plcr_ + Pia_) can be ignored and tile effective noise

variance is dominated by the noise multiplied by the noise

term (o'_r2), i.e.,

2 2 _ (56)O'ei _-_ O- 1 O"i

and, hence, the SNR can be well approximated by

P1 Pi 2T
SNRil - Nm N0i B (57)

A

An estimate of ¢il, ¢il can be obtained by computing

the inverse tangent of the real and imaginary parts of z/l,
i.e.,

_l(lk) _-- tan_l [Qil(tk)]
[ I.(tk) J

(hS)

The probability density function of such an estimate is

given in [11] as

= as eft(G)]} (59)P(¢,1) 1-_-e-SNR"/2 {1 + Ge _"_[1 +2rr

where eft(x) is the error function and

G = _/_il cos(¢Ail_ ¢il) (60)

The density in Eq. (59) is plotted in Fig. 10 and its deriva-

tion assumes that the noises ni,il and no,il are Gaussian.
Even though they are not Gaussian in the strict sense, a

Gaussian approximation is still justified by invoking the
central limit theorem due to the averaging over N sam-

ples. Figure 10 clearly indicates that a reasonably "good"
phase estimate can be obtained for SNRil as low as 6 dB.

At a moderately high SNRil, the distribution can be ap-

proximated by a Gaussian distribution with variance

1

c_¢,_ = SNR-'_ (61)

An improvement in phase error estimation can be ob-

tained by performing global phasing between L antennas,

which involves L(L - 1)/2 complex correlations as the sig-
nal from each antenna is correlated with the signal from

every other antenna. In the simplest form, the signal fi'om

antenna 1 is correlated with all other signals and the phase

errors are estimated. Global phasing reduces the residual
phase error variance of Eq. (61) by a factor of L - 2 by

employing least squares calculations [11] ([2] states that

the actual reduction is approximately 0.5(L - 2), which
means that global phasing gives an advantage over the

conventional scheme only for L > 4). In addition to global
phasing, closed-loop techniques can be utilized to reduce

the phase error as illustrated in Appendix B.

1. Combining Loss of FSC. In order to compute the

combining loss of FSC, consider the IF signals after phase
compensation, i.e.,

116



z_(tk) = v/_F t_''_+°10k)+A_''0k)l

+ ni(tk)e jb'`t'+e'(t_)+A¢'l('_)l (62)

where A¢il =¢ii - ¢ii refersto the residualphase error

between antenna i and the ith signaland ni(tt)is the

complex envelopeofthe thermal noisewith two-sidednoise

spectraldensity Noi. The signalcombiner performs the

weighted sum ofzi(tk),namely,

L L

= {v
i=1 i=1

+ ni(tk)ejb''tk+°'(t_)+A¢''(tk)]} (63)

Note that the variance of tilecombined complex signal

z(tk) is

L

' 2B Zfl?Noi (64)
i=1

The total signal power at the output of the combiner

conditioned on residual phases, A¢il(tk) , is thus given by

L L

i=1 j=l

L L L

= Zfl2PiCIFiC_FI + EE_ifljv/-P, PjCIFiC_F,

i=1 i=1 _,=t

(65)

where

CIF, -_ ejzx¢'l('k) (66)

is the complex signal reduction function due to phase mis-
alignment between the ith and first signals. Assuming that

the ensemble average of the phase difference between any

two antennas is independent of which antenna pair is cho-

sen and that the residual phase of each antenna pair is
Gaussian distributed with variance a 2 then it can be

A¢.,

shown that

CzF, C}F _ _-- Cij = C{e j[a¢''(tk)-'a¢''(tk)1}

I I Ct2 0,2

= e -_[ "*"+ "*.] iCj, a_¢,,=O

1 i=j

(67)

Performing the above averaging operation over P', the to-

tal signal power is obtained, namely,

P, = PI 7_ + 7,7j CO (68)
i=1 i=1

Note that in an ideal scenario (i.e., no degradation),

the signal reduction functions approach 1 (C 0 = 1 g i,j)

and Eq. (68) reduces to P_ = P1L _. Simultaneously, the

noise variance of Eq. (64) becomes proportional to L and,
hence, the SNR increases linearly with L as expected.

2. Telemetry Performance of FSC. With full spec-

trum combining, only one receiver, one subcarrier, and

symbol tracking loops are required. The samples of the

signal at the output of the integrate-and-dump filter can
be expressed as

vk=dkv_DCOSOe(1--2 [0,c0(1-- 1 )7 I +,4

(69)

where PD is the combined data power given by Pz sin 2 A

and n_ is Gaussian with variance given by Eq. (27).

F(epeating now the same steps as with either BC or

SSC, it can be shown that the symbol SNR in terms of
PD1 = P1 sin 2 A is given by

SNR- 2PDxTs _2 C---f-C--Tg- i=l ,*J
No 1 --c - s c --* y [,

(70)

where the loop lossesare computed using the combined

power, being carrieror data. Note that in the idealcase,

Eq. (70) reduces to SNRidea! of gq. (33) as expected. The

degradation factor for the full spectrum combining scheme,

Dl,c, is given, as before, by the ratio (in decibels) of the
combined symbol SNR to the ideal symbol SNR, i.e.,

( SNR
D],¢ = 101oga0 \SNRideat.]

= 10log10 / L /i=1 ,.J

(71)
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As an example, let Pi = 1:'1, Noi = Noz, and Bi = 1 for
all antennas, then the signal and noise powers of the real

process at tile output of the combiner become, respectively,

P; = Pz [L + 2(L- 1)e -(a_*)/2 + (L- 2)(L- 1)e -a_*]

_rz2= BLNoz (72)

and the SNR at tile combiner's output becomes

P, [L+ 2(L- + (L- 2)(L-
LNozB

(73)

With perfect alignment (i.e., a2A¢ --* 0), SNRz reduces to

P1L (74)
SNR_,id_t- NolB

as expected and, hence, the combining degradation for the

FSC scheme is given by

Ors c _-

10 logz0 L + 2(L - 1)e -(_X*)/2 + (L- 2)(L- 1)e-_" 1L _

(75)

Figure 11 depicts tile degradation of FSC, Dl,c, for the
same three-element array, as a function of PT/No of ttle

master antenna, Fig. 11(a), and modulation index A,

Fig. 11(b). It is clear from Fig. ll(a) that the FSC carrier

degradation is significantly reduced over those of SSC and
BC. Furthermore, the subcarrier and symbol degradations
are identical to those of BC and both are much smaller

than the SSC degradations, as expected. The primary ad-

vantage of FSC is that the carrier loop SNR for this partic-
ular array does not decrease below 8 dB and, hence, cycle

slipping is not a major issue even at PT/No = 20 dB-IIz,

with a 3-tlz carrier loop bandwidth.

The major drawback of FSC in this example is the long

integration time required to maintain a relatively small

combining loss. With B = 2 x 135 ktlz (IF bandwidth)

and T/B = 0.0008 sec 2, the integration time is 216 sec,

which is too long for the phase of interest to remain a

constant in a practical scenario. At PT/No = 20 dB-tlz,
the SNR at the correlator output, Eq. (57), is roughly

12 dB. In order to reduce the integration length, the cor-

relator bandwidth can be adjusted to pass only the first

harmonic of the subcarrier (i.e., B = 2 x 33 kltz), resulting

in a shorter integration time of 53 sec (still relatively long)

and a slight degradation in correlator SNR. Note that even

though the correlation is performed with only the first sub-

carrier harmonic, the combining should be accomplished

with the full data spectrum.

D. Carrier Arraying (CA)

In carrier arraying, several carrier tracking loops are

coupled in order to enhance the received carrier signal-to-
noise ratio and, hence, decrease the telemetry ("radio")

loss due to imperfect carrier synchronization. The cou-

pling can be performed using phase-locked loops (PLLs)
for residual carriers or Costas loops for suppressed BPSK

carriers. Only the PLL case is considered in this article
to illustrate the idea of carrier arraying. A general block

diagram is shown in Fig. 12 where two carrier loops share

information to jointly improve their performance as op-

posed to tracking individually. Carrier arraying by itself
does not combine the data and, thus, needs to operate with

baseband combining or symbol stream combining to array
the telemetry. This is shown in Fig. 13 where baseband

combining is employed to array the data spectra.

There are basically two scenarios where one would em-

ploy carrier arraying. In the first scenario, a "large"
antenna locks on the signal by itself and then helps a

"smaller" antenna track. In this case, the signal might ex-

perience dynamics requiring a large loop bandwidth and,

hence, the signal has to be strong enough to enable tile
carrier loop to operate with tile large bandwidth. A large

antenna with a strong signal is first used to track the sig-
nal and then tile dynamics of the signal are estimated and

removed from the weaker signal to enable the other car-

rier loop to operate with a smaller bandwidth and, hence,

a higher loop SNR. In the second scenario, the signal is
too weak to be tracked by any single antenna but can be

tracked jointly by two or more antennas. The combin-

ing methods used in the latter case are similar to those
employed in FSC when aliguing the phases of pure tones

(hence, requiring a smaller correlator bandwidth). In ei-
ther scenario, carrier arraying can be implemented in one

of two ways: at baseband or at an intermediate frequency

(IF). Both implementations are discussed in the next sec-
tions.

1. Baseband Carrier Arraying Scheme. Baseband

carrier arraying is illustrated in Fig. 13 where tlle error
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signals at the output of the phase detectors are combined
at baseband. This scheme is analyzed in [12] where it is

shown that the variance of the phase jitter process in the

master PLL is given by

O'cl _--- L

1+ E  iHl(:)[1 - Hi(z)]
i=2

2

dz Not

Z 2Tel Pcl

Hl(z)[1 - Hi(z)]
L

+ E 7iHl(z)[1- Hi(z)]
i--2

2

dz Noi

z 2T_iP_i

(76)

where Hi(z) is the closed-loop transfer function of the ith

loop, T_i is the loop update time, and 7i is as defined in

Eq. (32). The above integral is difficult to evaluate in

general, ttowever, when Bci <<: Bcl for i = 2,..., L, which
is the preferred mode of operation, the above integral can

be approximated by

L
o T

Bd _ /3(A0i

2 i=i (77)
O'cl _ pelF2

which assumes ideal performance. In this case, the master

loop SNR becomes

Pc1 r (78)
Pel =

BcINoi

assuming identical noise spectral densities. The actual

variance will typically be larger and requires the evalu-

ation of Eq. (76), which depends on the actual loop filters
implemented.

2. IF Carrier Arraying Scheme. One form of IF

carrier arraying is depicted in Fig. 14 and is conceptually
tile same as full spectrum combining. In this case, the total

power, Pi, is substituted for by the carrier power, Pei. So,

all equations and results derived in Section III.C regarding

the combining loss can be automatically applied to the IF

carrier arraying scheme. Phase estimation in this case can

be performed by downconverting the received IFs to base-

band using a precomputed model of the received Doppler
and Doppler rate. The correlation can be computed at

baseband using "very small" bandwidths B and, hence,

requiring "short" integration times T. From Eq. (52), the
variance of the ith carrier correlator is

2 • C r . ')c%i = B(NolPci + NoiPd) + A'01:\0_B

_ NolNoiB 2

while tile correlator's SNR is

(79)

Pci Pci 2T

S.NR_, il _- N0i No/ B (80)

Note that for IF carrier arraying, the bandwidt.h B is much

narrower than for full spectrum combining since tile data

spectrum is not employed.

Tile signal combiner performs the weighted sum of car-

rier signals ei(t), giving the complex combined carrier sig-
nal

L

i=l

+ ni(t)e j[w"t+O_(t)+A*_,'(')]] (81)

Following Eqs. (65) through (68), the average carrier power
and the variance of the combined complex carrier signal

e(Q are, respectively,

L L L

Pc= co,
i=l i=l k=i

= P_i

i= i ,';;

(82)

and

L

o-e = 2B oi
i=1

(83)

where

Co, ij = C{ ej[Ac,_'''(tk)-A¢_d'(tk)] }

[ 1 i=j

(84)
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and resulting in a correlator SNR

1
_o,,, - (85)

SNR¢ij

To illustrate the results with a simple example, let Pci =

Pc1, Noi = N01, and 13/ = 1 for all antennas. Then the

signal and noise powers of the real process at the output

of the carrier combiner become, respectively,

Pc = Pc1 [L + 2(L - 1)e-(°_,*. o)/2

-' o]+(L - 2)(L - 1)e- _*,

and

_4,,c = BLNol (86)

Pc
SNRc = 2

O'A4_, c

[ ]Pc, L + 2(L - l)e-(°_*..)/2+ (L - 2)(L - l)e- :+._

L Nol B

In an ideal scenario, a2 , c _ 0 and

PolL
SNRc. ideal -- NolB

(87)

(8s)

The combining degradation in decibels for IF carrier ar-
raying becomes

[L + 2(L - 1)e-(a_'*, o)/_ + (L - 2)(L - 1)e-a_*, o
Dilc lOlogl0 L L 2

(sg)

E. Arraying Combinations

Besides the individual arraying schemes described in

this article, combinations of them can be implemented.

In particular, SSC can be enhanced with SA and with

CA. Similarly, BC can be enhanced with SA and with
CA. FSC uses only one set of receiver, subcarrier, and

symbol tracking loops, but, again, the performance of the

receiver can be improved with SA. A general symbol SNR

degradation function, which is applicable to any arraying

scheme, is given in Appendix C, Table C-2.

A comparison of all schemes and arraying combinations

is depicted in Figs. 15(a) and (b), where the degradations

of BC, SSC, FSC, SSC/SA/CA, FSC/SA, BC/SA/CA,

SSC/CA, SSC/SA, BC/SA, and BC/CA are all computed

versus PT/No for a fixed A = 65.9 deg. These curves were
computed assuming Br = 0.1 mHz and B,_ = 135 kHz for

the RTC, T/B = 0.0008 sec _ for FSC, T/B = 0.075 sec 2

for CA (assumed at IF), and a symbol rate of 34 sym-

bols per sec (sps). From Fig. 15(a), it seems that the
three schemes with the least degradation at 20 dB-Hz axe

FSC/SA, BC/CA/SA, and SSC/SA/CA. Most schemes

seem to maintain an 8-dB minimum carrier loop SNR for

PT/No as low as 20 dB-Hz, except for SSC and BC which

loose lock at roughly 24 dB-Hz and BC/CA, and SSC/CA
which requires a PT/No > 21 dB-Hz. Recall that the delay

adjustment in FSC and FSC/SA was assumed perfect re-

sulting in no degradation. More realistically, a 0.05-dB or a

0.1-dB degradation should be added and, hence, FSC/SA
and BC/SA/CA seem to provide identical degradations.

For this particular case, FSC requires 216 sec of inte-

gration length (for T/B = 0.0008 sec 2 and B = 2 × 135

kHz), a rather unrealistic parameter. For a shorter inte-
gration time (on the order of a few seconds), the correlator

SNR degrades significantly and the differential phase can-
not be estimated. The bandwidth B can be reduced to

pass only the first harmonic of the subcarrier, but that
still results in unrealistic integration times. The signal

can be passed through a "matched filter," which passes

the subcarrier harmonics and the data modulation, but

rejects the spectrum between the harmonics. The effec-
tive bandwidth of such a filter would be on the order of

the symbol rate and, hence, results in shorter integration

times as long as the subcarrier frequency is a "large" mul-

tiple of the symbol rate (m >> 1). The drawback of such a

filter is that it is too specific to the signal of interest and

needs to be modified for each mission. Moreover. it. might
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require frequency tuning to center the signal in the band
of interest. Another technique to reduce the bandwidth is

to only correlate the residual carrier components in order

to further shorten the integration time. This is precisely

the technique employed in carrier arraying, when imple-
mented at IF. It should be pointed out that even though

the phase is adjusted at IF, it can and should be estimated
at baseband by mixing the received IF from each antenna

with a Doppler and a Doppler rate predict of the signal.

The outputs of the mixers consist of a tone with a very

low frequency component which requires a "very small"
bandwidth B prior to the correlation. With T/B = 0.075

sec _ and T = 3 sec, B = 2 x 20 Hz, which requires the

frequency predicts to be correct to within -I-20 Hz. Even
if the error is larger than 4-20 ttz, a fast Fourier transform
can be used to reduce the frequency error at the output of

the mixers such that it lies well within B/2 tlz.

As seen from the above example, FSC/SA and

BC/SA/CA provide the least degradation and, hence, the
"best" performance overall, but BC/CA/SA accomplishes

that with reasonable integration times. SA is enhancing

the performance in both cases because the carrier com-

ponent is so weak due to the high modulation index and

relatively low received power. For signals with stronger
carriers, FSC and FSC/SA would provide similar degra-

dations for all practical purposes, as would BC/CA and

BC/SA/CA. It is worth noting at this point that FSC,

as presented in this article, compensated for the signal
delays up front and then adjusted for the phases. This

is the classical arraying performed in radiometry, ttow-

ever in BC/CA, CA is first employed to lock on the signal

(hence, a phase adjustment) and later, delay compensa-

tion is performed in the BBA to coherently add the data.
The latter, which is equivalent in performance to FSC (but

with shorter integration times), seems to be favored more

by communication engineers whereas FSC seems to be fa-

vored more by astrophysicists. The major difference be-

tween FSC and BC/CA is the integration length required
to estimate the differential phase. BC/CA offers a sig-

nificant advantage by requiring much shorter integration

times for spacecraft with very weak signals and a large
subcarrier-to-data-rate ratio.

In either FSC or BC/CA, atmospheric effects can be

significant, especially at higher frequencies and in the pres-

ence of thunderstorms. Figure 16 depicts the relative

phase along baseline "1-3" in the VLA on a clear night

and in the prcsence of thunderstorms. In the latter case,

the integration time T needs to be short to track tile phase
variation. The resulting combining degradation can be

0.2 dB or even more depending on the scenario.

IV. Numerical Examples

The results derived in this article were applied to sev-

eral existing deep-space missions in order to illustrate the
differences in combined symbol SNR performance. The

missions considered were Pioneer 10, Voyager 2, and Ma-

gellan, reflecting weak, medium, and strong signals, re-
spectively, in the DSN. As expected, the weaker the signal,

the harder it is to array the antennas.

A. Pioneer 10

The signal received from Pioneer 10 represents the

weakest signal in the DSN. It is an S-band signal with

the following characteristics as of May 1990:

(1) symbol rate R_ = 32 sps

(2) subcarrier frequency f_c = 32768 IIz

(3) modulation index A = 65.9 deg

The receiver is assumed to operate with the following

parameters:

(1) B, = 1.5 IIz for the carrier bandwidth (Block IV
Receiver)

(2) Bsc = B,y = 0.1 IIz for subcarrier and symbol

tracking loops

(3) Br = 0.1 mtIz and B, = 135 kItz for the RTC

(4) T/B = 0.075 sec 2, B = 2 x 20 Hz, and T = 3 sec for
carrier arraying

(5) T/B = 0.0008 sec 2 for FSC with regular IF filters
(B = 2 × 135 kHz and T = 216 sec)

(6) T/B = 0.0008 sec 2 for FSC with "matched" filter

[B = 5 × (2 × 50) IIz and T = 0.4 see], where the
factor 5 accounts for the first five odd subharmonics

of the square-wave subcarrier.

Two array configurations are considered: a 70-m and
34-m STD antenna array, which can provide 0.68-dB gain

(over the 70-m antenna) in the ideal case, and an array of
two 70-m antennas (providing an ideal 3-dB gain). The

degradations for both arrays are shown in Tables 1 and 2,

respectively. The 20-dB-IIz signal represents the approx-
imate level at the master antenna, in this case, the 70-m

antenna.

In the first array (the 70-m plus STD 34-m antennas),
BC and SSC cannot operate due to the inability of the STD

34-m antenna to maintain carrier lock. tlowever, BC/SA

and SSC/SA can operate with an 8-dB loop SNR, which

is the mininmm required to avoid cycle slipping. FSC/SA
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achieves the highest loop SNR at 18.2 dB, followed by

BC/SA/CA and SSC/SA/CA at 17.7 dB, and followed fi-

nally by BC/SA, SSC/SA, and FSC at 11 dB. The smallest

degradations are obtained with FSC/SA and BC/SA/CA
at about 0.53 dB. Note that the combining loss of FSC at

0.19 dB can be reduced by integrating over longer periods.

In the array of two 70-m antennas, all schemes maintain

lock as expected with the smallest degradation achieved

by FSC/SA at 0.34 dB and tile largest achieved by BC at

0.81 dB. FSC/SA seems to be the best arraying scheme for
Pioneer 10 and the sideband aiding is essential in reducing

tile degradation. However, recall that the long integration

time required in FSC/SA renders the scheme impractical;
hence, BC/CA/SA is really the best scheme for Pioneer 10.

B. Voyager 2

Unlike Pioneer 10, Voyager 2 can be tracked by all 34-m

antennas in the DSN. It represents a medium signal in both

received power and data rate. The X-band signal processes

the following characteristics:

(1) symbol rate R_ = 43.2 sps

(2) subcarrier frequency fsc = 360 kttz

(3) modulation index A = 77 deg

The receivers are assumed to operate with tile following

parameters:

(1) Be = 10 IIz for the carrier bandwidth

(2) B,_ = B, u = 1.0 ttz for subcarrier and symbol track-
ing loops

(3) BT = 1 mIIz and B_ = 3.2 MIIz for the RTC

(4) T/B = 0.075 see 2 for carrier arraying

(5) T/B = 2.0 x 10 -7 see s , B = 3.2 Mltz, and T =
1.3 see for FSC

Table 3 provides the degradations for all arraying

schemes for a three-element array of one HEF 34-m and
two STD 34-m antennas. This array can provide an

ideal 3-dB gain over the HEF 34-m master antenna, with

PT/No = 39 dB-IIz. The second array, whose performance
is shown in Table 4, also consists of three elements: one

70-m, one STD 34-m, and one ttEF 34-m antenna. The

master in this case is the 70-m antenna with PT/No =

45 dB-tIz. This array call provide a m,%xinaum gain of

1A3 dB. BC/SA, BC/CA, and BC/SA/CA call provide

the smallest degradations if tile combining loss is main-
tained below 0.01 dB. On the other hand, FSC/SA pro-

vides a better performance for a more realistic 0.07-dB

IF degradation. For all practical purposes, both FSC and

BC/CA perform equally with realistic integration times.

C. Magellan

The highest data rate signal is transmitted by Magellan
at X-band with

(1) symbol rate Rs = 537.6 ksps

(2) subcarrier frequency foe = 960 kIIz

(3) modulation index A = 78 deg

Tables 5 and 6 provide the degradations for an array
of one tIEF 34-m and one STD 34-m antenna (providing

a 1.76-dB ideal gain over the IIEF 34-m master antenna)

and another array of one 70-m, one tlEF 34-m, and one

STD 34-m antenna (providing a 1.43-dB ideal gain over

the 70-m master antenna). The receivers are assumed to
operate with

(1) Be = 30 Itz for carrier bandwidth

(2) Bsc = Bsu = 3.0 tIz for subcarrier and symbol track-

ing loops

(3) Br = 10 mIIz and B,, = 4.5 MtIz for the RTC

(4) T/B = 0.075 sec 2 for carrier arrayi_lg

(5) T/B = 1.0 x 10 -1° sec 2 for FSC

In this case, all combining methods provide near-optimum

performances for both arrays.

Vo Conclusions

Four different arraying schemes have been investigated

and these include symbol stream combining, baseband

combining, carrier arraying, and full spectrum combin-

ing. For DSN applications where telemetry signal recep-
tion is the primary concern, BC/CA and BC/CA/SA pro-

vide the best arraying schemes for very weak sigl,als with

large subcarrier-frequency-to-data-rate ratios. FSC and
FSC/SA are not well suited for these scenarios, but can

be made so by employing "matched filters" at the cost of

additional complexity. For moderate to high signal levels,

FSC and BC/CA are both well suited and provide compa-

rable performances.
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Table 1. Pioneer 10, one 70-m and one STD 34-m antenna array

Arraying
scheme

Total Carrier Subcarrier Symbol RTC or IF

PT/No, degradation, degradation, degradation, degradation, degradation,

dB-llz dB dB dB dB dB

BC 20.00 no carrier lock -- --

BC+SA 20.00 -0.614 -0.17 -0.25 -0.07 -0.12

BC+CA 20.00 -0.792 -0.34 -0.26 -0.08 -0.12

BC+SA+CA 20.00 -0.526 -0.07 -0.26 -0.08 -0.12

SSC 20.00 no carrier lock -- --

SSC+SA 20.00 -0.670 -0.17 -0.39 --0.11 0.00

SSC+CA 20.00 -0.849 -0.34 -0.40 -0.11 0.00

SSC+SA+CA 20.00 -0.583 -0.07 -0.40 -0.11 0.00

FSC 20.00 -0.874 -0.35 -0.26 -0.08 -0.19

FSC+SA 20.00 -0.593 -0.07 -0.26 -0.08 -0.19

FSC 20.00 -0.874 -0.35 -0.26 -0.08 -0.19

(matched filter)

FSC+SA 20.00 -0.593 -0.07 -0.26 -0.08 -0.19

(matched filter)

Table 2. Pioneer 10, two 70-m antenna arrays

Arraying
scheme

PT/No, Total Carrier Subcarrier Symbol RTC or IF
degradation, degradation, degradation, degradation, degradation,

dB-Hz dB dB dB dB dB

BC 20,00 -0.812 -0.40 -0.19 -0.06 -0.17

BCTSA 20.00 -0.487 --0,08 -0.19 -0.06 -0.17

BCTCA 20.00 -0.608 -0.20 -0.19 -0.06 -0.17

BC+SA+CA 20.00 -0.475 -0.06 -0.19 -0.06 -0.17

SSC 20.00 - 0.768 -0.40 - 0.29 - 0.08 0.00

SSC+SA 20.00 -0.444 -0.08 -0.29 -0.08 0.00

SSC+ CA 20.00 - 0.565 -0.20 -0.29 - 0.08 0.00

SSC+SA+CA 20.00 -0.432 -0.06 -0.29 -0.08 0.00

FSC 20.00 - 0.509 - 0.20 - 0.19 - 0.06 -0.07

FSC+SA 20.00 -0.347 -0.04 -0.19 -0.06 -0.07

FSC 20.00 -0.509 -0.20 -0.19 -0.06 -0.07

(matched filter)

FSC+SA 20.00 -0.347 -0.04 -0.19 -0.06 -0.07

(matched filter)
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Table3.Voyager2,onemasterHEF34-mandtwoSTD34-mantennaarrays

Arraying
scheme

PT/No, Total Carrier Subcarrier Symbol RTC or IF
degradation, degradation, degradation, degradation, degradation,

dB-Hz
dB dB dB dB dB

BC 39.00 -0.346 -0.16 -0.11 -0.03 -0.04

BC+SA 39.00 -0.219 -0.04 -0.11 -0.03 -0.04

BC+CA 39.00 -0.236 -0.05 -0.II -0.03 -0.04

BCTSATCA 39.00 -0.197 -0.02 -0.II -0.03 -0.04

SSC 39.00 -0.548 -0.16 -0.31 -0.08 0.00

SSC4.SA 39.00 -0.422 -0.04 -0.31 -0.08 0.00

SSCTCA 39.00 -0.439 -0.05 -0.31 -0.08 0.00

SSC+SATCA 39.00 -0.400 -0.02 -0.31 -0.08 0.00

FSC 39.00 -0.284 -0.06 -0.Ii -0.03 -0.09

FSC 4-SA 39.00 - 0.235 -0.01 -0.11 - 0.03 - 0.09

Table 4. Voyager 2, one 70-m, one STD 34-m, and one HEF 34-m antenna array

Arraying

scheme

PT/No, Total Carrier Subcarrier Symbol RTC or IF
dB-Hz degradation, degradation, degradation, degradation, degradation,

dB dB dB dB dB

BC 45.00 -0.130 -0.06 -0.05 -0.01 -0.01

BC4.SA 45.00 -0.084 -0.01 -0.05 -0.01 -0.01

BC4.CA 45.00 -0.091 -0.02 -0.05 -0.01 -0.01

BC-{-SA4.CA 45.00 -0.077 -0.01 -0.05 -0.01 -0.01

SSC 45.00 -0.208 -0.06 -0.12 -0.03 0.00

SSC4.SA 45.00 -0.163 -0.01 -0.12 - 0.03 0.00

SSC4.CA 45.00 -0.170 -0.02 -0.12 -0.03 0.00

SSC4.SA+CA 45.00 -0.156 -0.01 -0.12 -0.03 0.00

FSC 45.00 -0.148 -0.02 -0.05 -0.01 -0.07

FSC+SA 45.00 -0.134 -0.01 -0.05 -0.01 -0.07
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Table5.Magellan,onemasterHEF34-mand one STD 34-m antenna array

Arraying
scheme

PT/No Total Carrier Subcarrier Symbol RTC or IF
dB-Hz' degradation, degradation, degradation, degradation, degradation,

dB dB dB dB dB

BC 59.00 -0.022 -0.01 -0.01 0.00 0.00

BC+SA 59.00 -0.022 -0.01 -0.01 0.00 0.00

BC+CA 59.00 -0.022 -0.01 -0.01 0.00 0.00

BC+SA+CA 59.00 -0.022 -0.01 -0.01 0.00 0.00

SSC 59.00 -0.027 -0.01 -0.02 0.00 0.00

SSC+SA 59.00 -0.027 -0.01 -0.02 0.00 0.00

SSC+CA 59.00 -0.027 -0.01 -0.02 0.00 0.00

SSCTSA+CA 59.00 -0.027 -0.01 -0.02 0.00 0.00

FSC 59.00 -0.036 -0.01 -0.01 0.00 -0.02

FSC+SA 59.00 -0.036 -0.01 -0.01 0.00 -0.02

Table 6. Magellan, one 70-m, one HEF 34-m, and one STD 34-m antenna array

Arraying
scheme

PT/No, Total Carrier Subcarrier Symbol RTC or IF

dB-Hz degradation, degradation, degradation, degradation, degradation,
dB dB dB dB dB

BC 65.00 -0.015 -0.01 -0.01 0.00 0.00

BC+SA 65.00 -0.015 -0.01 -0.01 0.00 0.00

BC+CA 65.00 -0.015 -0.01 -0.01 0.00 0.00

BC+SA+CA 65.00 -0.015 -0.01 -0.01 0.00 0.00

SSC 65.00 -0.021 -0.01 -0.01 0.00 0.00

SSC+SA 65.00 -0.021 -0.01 -0.01 0.00 0.00

SSC+CA 65.00 -0.021 -0.01 -0.01 0.00 0.00

SSC+SA+CA 65.00 -0.021 -0.01 -0.01 0.00 0.00

FSC 65.00 -0.031 -0.01 -0.01 0.00 -0.02

FSC+SA 65.00 -0.031 -0.01 -0.01 0.00 -0.02
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Appendix A

Gamma Factors for DSN Antennas

Table A-1 summarizes the 7i factors, 1 defined by

Eq. (23), for several DSN antennas at both S-band (2.2

to 2.3 GHz) and X-band (8.4 to 8.5 GHz). Conceptu-

ally, these gamma factors represent the antenna gain/noise

temperature ratios normalized by the gain/noise temper-

; Deep Space Network/Flight Project Interlace Design Handbook,
Document 810-5, Rev. D, Vol. I (internal document), Jet Propul-
sion Laboratory, Pasadena, California, Modules TCI-10, TCI-30,
and TLM-10, 1988.

ature of the largest antenna. Here HEF denotes high-

efficiency antenna and STD a standard antenna.

The numbers presented below should be used in a rel-

ative sense, not in an absolute sense. For example, for a

three-element array consisting of one HEF 34-m antenna

and two STD 34-m antennas at S-band, the master an-

tenna (in this case, the HEF 34 m) will have 71 = 1 and the

other two antennas would have 72 = 73 = 0.13/0.26 = 0.5.

Table A-1. Gamma factors for DSN antennas

Antenna Frequency
size band 71

70 m S-band 1.00

34 m STD S-band 0.17

34 m HEF S-band 0.07

70 m X-band 1.00

34 m STD X-band 0.13

34 m HEF X-band 0.26
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Appendix B

Closed-Loop Performance

Typically, one would like to limit the IF combining

losses expressed by Eq. (75) to some prespecified maximum

value, say Dmax. Solving Eq. (75) for o-_¢ ma_ yields

[Io( -ZT)L-1]CrA¢ m_ < -2 In L L- 1
(B-l)

The variance of the phase estimate, ¢il, can be reduced by

either increasing the correlation time T in Eq. (57) or by

tracking the phase error process in a closed-loop fashion.

Note that the value of B in Eq. (57) is set by the bandwidth
of the telemetry spectrum and cannot be reduced at will.

In the simplest closed-loop implementation of the full

spectrum combining scheme, phase-error estimates can be

updated using the following difference equation:

6(z)
G(z) = "_ - z--1

(B-3)

The variance of the closed-loop phase error process will
now be

where

No1NoiB (B-4)
o'_1 : ILO'2¢, il : 11 P1Pi2T

Ig(z)]2z

and H(z) = G(z)/[1 + G(z)]. Using the above G(z) gives

0(n) -- t_(n - 1) + a¢(n) (B-2)

where the value of c_ can be set between 0.2 and 0.5 and

0(n) is the filtered phase error estimate. The above differ-

ence equation gives the following loop transfer function:

o_
- (B-6)11 2 - _

As an example, for o_= 0.2, 11 = 0.11 and the variance of

the phase jitter is reduced by a factor of 10.
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Appendix C

Generalization of the Symbol SNR Degradation Function

By comparing the symbol SNR degradation factors that were obtained for different arraying schemes, one arrives at

the following general equation of SNR degradation for combinations of arraying schemes:

"i_=l i,j

'*' ) (C-1)
D = lO loglo ['2

where the particular signal reduction factors CA and CBi are summarized in Table C-1.

Without Sh, the carrier loop SNR is P¢,r -_ 1/_r_,r = Pc/(NoBc), while with SA, the loop SNR becomes Pc =

Pc,_ + P¢,,, where pc,, is given in Eq. (10). Note that ill BC and FSC, PD is the combined data power, reduced
somewhat by the combining loss.

Table C-1. Comparison of signal reduction factors for different arraying schemes

Item SSC SSC+CA BC BC+CA FSC

Ca 1 Cc C,c C,_ Cc C',c C,y C_ C,c C,_

CB, Cci C, ci C, yi C, ci C, yi Cci Cri Cri CIri
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This article describes telemetry tests with the Advanced Receiver II (ARX II) in

Compatibility Test Area 21. The ARX II was operated in parallel with a Block-Ill

Receiver/baseband processor assembly combination (BLK-III/BPA) and a Block-

III Receiver/subcarrier demodulation assembly/symbol synchronization assembly

combination (BLK-III/SDA/SSA). The telemetry simulator assembly provided the

test signal for all three configurations, and the symbol signal-to-noise ratio as well
as the symbol error rates were measured and compared. Furthermore, bit-error
rates were also measured by the system performance test computer for all three

systems. Results indicate that the ARX-H telemetry performance is comparable
and sometimes superior to the BLK-III/BPA and BLK-III/SDA/SSA combinations.

I. Introduction

The Advanced Receiver (ARX II) [1] is a digital system

that performs carrier, subcarrier, and symbol detection,

as well as Doppler extraction. The latter function was
demonstrated successfully at Goldstone [2] in June 1989.

The telemetry functions have been added since then and

tested in Compatibility Test Area 21 (CTA21). Specifi-

cally, residual carrier, subcarrier, and symbol synchroniza-
tion have been added, including a symbol signal-to-noise

ratio (SSNR) estimator. Sideband aiding, which requires
a carrier Costas loop, and quadrature phase-shift keying

capabilities have not been added yet.

This article describes the ARX-II telemetry tests which

were conducted in CTA21. The ARX II was operated in

parallel with a Block-III Receiver/baseband processor as-

sembly combination (BLK-III/BPA) and a Block-III Re-

ceiver/subcarrier demodulation assembly/symbol synchro-
nization assembly combination (BLK-III/SDA/SSA). The

BPA is a baseband assembly (BBA) without the real-time

combining capability and, hence, is equivalent to the BBA

for the purpose of these tests.

II. Test Objectives

The objectives of the ARX-II telemetry tests at CTA21
were to:

(1) Demonstrate the added telemetry capability of the

AI_X II to perform subcarrier demodulation and

symbol synchronization at different data rates and

at varying signal-to-noise ratios.

(2) Test the interface between the ARX I[ and the

telemetry processor assembly (TPA).
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(3) Compare the ARX-II SSNR estimator's results with
another SSNR estimate determined from measuring

the symbol error rate (SER), referred to as the sym-
bol error rate SNR (SERSNR), as a measure of the

accuracy of the ARX-II SSNR estimator.

(4) Compare the telemetry performance of the ARX II
to that of the BLK-III/BPA and BLK-III/SDA/SSA
combinations.

(5) Measure telemetry performance with bit and symbol
error rates for all three systems.

III. Test Description

Tile ARX-II telemetry test configuration in CTA21 is

depicted in Fig. 1. The telemetry simulator assembly

(TSA) provided a test signal consisting of a semirandom
symbol stream modulated on a square wave subcarrier. In-
ternal to the TSA, a pseudorandom sequence is generated
to simulate the transmitted bits. These are later coded

using a (7,1/2) convolutional code to produce the symbols
which modulate the subcarrier. This telemetry baseband

signal, consisting of subcarrier and data (Sc x D), forms

the input to an exciter which produces an uplink S-band

modulated signal at 2113 MHz. A digitally controlled os-

cillator (DCO) produces a 44-MHz IF and the frequency of
this intermediate frequency (IF) signal is multiplied by the

integer 48 to obtain the S-band (2112-MIIz) uplink. The

exciter phase modulator has a specification bandwidth of

2 MHz (which would become a crucial parameter at high

data rates) and outputs a constant power level.

The output of the exciter (C x Sc x D) is then converted

to a downlink S-band signal (2295 MHz) by the transla-

tor which multiplies the frequency by the ratio 240/221.

This signal is then fed into an S-band field-effect-transistor

(FET) amplifier with a 4.5-dB noise figure, a 50-dB gain,
and a bandwidth from 2 to 3 GHz. The operating system

noise temperature was approximately 500 kelvin. The out-

put of the S-band amplifier (C x Scx D + N) was then
sent simultaneously to the Block-III Receiver and to the

multimission receiver (MMR). The MMR downconverted
the S-band signal to a 300-MHz IF signal that was sent to
the ARX II.

The ARX II was operated in parallel with a BLK-

III/BPA and a BLK-III/SDA/SSA combination. SSNR
measurements were performed by the ARX II, the BPA,

and the SSA using the split-symbol moment estimator [3].

Moreover, both tile transmitted symbols and the symbol

clock from the TSA were passed to the ARX II, the BPA,

and the SSA where SER measurements were performed.

The latter measurements were mapped into an equivalent

SSNR, referred to as SERSNR, assuming an additive white

Gaussian noise channel. Bit-error rates (BElLs) were also

measured and compared for all three systems for different

data rates. Symbols at tile output of the SSA were fed to

TPA 1, while the symbols from the output of the ARX II
and the BPA shared the same input of the TPA 3 through

a telemetry switch. The decoded bits from TPA 1 and
TPA 3 were sent to the system performance test (SPT)

computer where BER measurements took place.

Telemetry signal path verification tests were run with

different test signals to verify the flow of data from the
TSA to the TPA. Telemetry tests for different data rates

at varying signal-to-noise ratios at tile input of the receiver

were done according to prepared configuration test tables.

These tables represent current flight missions for different

spacecraft and cover signals from the Pioneer 10 low data

rate (16 bits per sec--bps) through the Magellan high data

rate (268.8 kbps) signal.

The test signal was calibrated for different telemetry
tests. A carrier suppression procedure was used to set

up the modulation index and a }'-factor procedure was

used to set up the bit SNR (Eb/No) at the input of the
receiver. The modulation index adjustment procedure is

described in Appendix A, while the YF setup is discussed

in Appendix B. Accuracy of both procedures provides a
worst-case uncertainty of -t-0.5 dB in the calibrated test

signal SSNR.

IV. Test Results

The tests performed can be divided into two main

classes: general telemetry tests comparing the three con-

figurations and specific tests for the Pioneer 10 spacecraft.
The objective of the first set of tests was to compare the

three systems on a relative basis, while the results of the
latter tests were compared to theoretically predicted re-

sults.

It is worth noting at this point the difference between

SSNR degradation and SSNR loss. SSNR degradation is

defined as the average reduction in SNR at the symbol
matched filter output due to imperfect synchronization

caused by carrier, subcarrier, or symbol tracking. For

example, the SNR degradation due to imperfect carrier

reference is given by

D_=E{cos2¢_} (1)

where g denotes expectation over the carrier phase error

¢_. SSNR loss, on the other hand, is defined as the ad-
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ditional SSNR needed in the presence of imperfect syn-
chronization in order to achieve the same symbol error

probability for the case of perfect synchronization. SSNR

loss is shown in Fig. 2(a) and is specified at a particular

SSNR or the equivalent symbol error rate. SSNR loss is

typically larger than the SNR degradation and both were
utilized in analyzing the measured data. Bit SNR (BSNR)

loss is similarly defined as the additional BSNR required

to achieve a certain BER. The performance of the (7,1/2)

convolutional code (assuming Viterbi decoding with sym-

bols quantized to three bits), in an additive white Gaus-
sian noise channel, is depicted in Fig. 2(b) and was used

to assess tile bit-error rate SNR (BERSNR) loss.

A. Measurement Accuracy

Since the results are based solely on measurements, it is

worthwhile at this point to discuss their confidence level.

Note that the outcome of each symbol (or bit) detection is

either "no symbol error" or "symbol error," i.e., a binary
decision. Let ,_' be a random variable denoting the number

of "symbol errors" in a test of n symbols. Then, A" can

be modeled by a binomial distribution with mean np and

variance np(1 - p), where p denotes the expected proba-

bility of symbol error (i.e., SER). tlence, the error level
(the ratio of the standard deviation to the mean) becomes

k/(1 -p)/np, with an accuracy level of 1 - _/(i -p)/np.

As an example, when testing a system with an expected

probability of symbol error of 2.288 percent (SSNR =

3.0 dB) using 10,000 symbols, the results will be correct

with a 93.4 percent accuracy level. Oil the other hand,
for a 0.595 percent SER (SSNR = 5 dB), the accuracy

level decreases to 87 percent, qb translate the SER ac-

curacy to its counterpart in SSNR, the performance of

binary phase-shift key (BPSK) in an additive white Gaus-
sian noise channel is used, Fig. 2(a). For example, tile

93.4 percent accuracy at an SSNR of 3 dB translates into

an SER of 0.02288 4- 6.6 percent (or a maxinmm SER of

0.02439). From Fig. 2(a), the latter SER corresponds to
2.85 dB in SSNR and, hence, a deviation or accuracy of

:t:0.15 dB (3 - 2.85 dB) in SSNR. Similar accuracies can

be obtained in terms of BSNR using Fig. 2(b).

B. Relative Performances of ARX II, BLK-III/BPA, and
BLK-III/SDA/SSA

Throughout the tests to follow, the data format was

non-return-to-zero (NRZ) modulated on a square-wave
subcarrier with a -t-0.5-dB worst-case SSNR error. In the

first set of tests, the SSNR was set to 1 dB and the teleme-

try configuration tests are shown in Table 1. It includes

eight tests ranging in symbol rate from 32 symbols per

see (sps) typical of Pioneer 10 to 537.6 ksps, which corre-
sponds to the high data channel of Magellan. In each test,

the SERSNR was deduced from the measured SER and

the loss was computed based on the assumption that the

input SSNR is exactly 1 dB. The corresponding SERSNR
loss is computed in each case and depicted in Fig. 3(a). Si-

multaneous measurements of the BER were made by the

SPT and the corresponding BERSNR was computed us-

ing the performance of the (7,1/2) convolutional code, as

given in Fig. 2(b). The resulting BERSNR loss is shown
in Fig. 3(b) for all tests. Note that the SERSNR loss for

all three systems agrees to within 0.2 dB for all symbol

rates between 2.4 ksps and 268.8 ksps. For 32 sps and

80 sps (or the equivalent 16 bps and 40 bps), the ARX II
outperformed the BLK-III/BPA and BLK-III/SDA/SSA

combinations by as much as 1.2 dB in SSNR. The reason

for this improvement is the capability of the ARX II to

use narrower carrier loop bandwidths than the Block-III

Receiver, resulting in a higher loop SNR and smaller phase
jitter.

At the highest rate of 537.6 ksps, the ARX-II perfor-
mance was degraded by about 0.4 dB with respect to the

BLK-III/BPA combination (the SSA is specified to oper-

ate at a maximum of 200 ksps and was not operational in

this case). Other tests were performed at a lower SSNR

(-1 dB), and the results are shown in Fig. 4 with the
test configuration in Table 2. The subcarrier and symbol

synchronization loops were operating with the same band-

widths as those given in Table 1. IIere again, the ARX-II

SERSNR loss, Fig. 4(a), and the BERSNR loss, Fig. 4(b),

at 537.6 ksps are at least 0.4 dB worse than those of the
BLK-III/BPA. Furthermore, the two figures are reflecting

the coding gain of 3 dB to within 0.2 dB.

The telemetry degradation of the ARX II at 537.6 ksps

was of primary concern and has been thoroughly investi-

gated. It turned out that the additional loss was really due
to the filtering operation on the signal in the exciter itself,

and not in the ARX II. This is the reason why the loss

of the BLK-III/BPA combination also increases at that

symbol rate. Figure 5 illustrates the filtering phenomenon

clearly. In Fig. 5(a), the spectrum of a 1-Mth square-

wave subcarrier is shown indicating only the presence of
the odd harmonics. The bandwidths of the various signals

and systems are indicated in Fig. 5(b); the exciter has a
2-MIh bandwidth which passes only the first harmonic of
the 960-kIIz subcarrier. The Block-III Receiver and the

ARX II have roughly 4-MItz and 8-MIh telemetry band-

widths, respectively. Expanding a square-wave subcarrier

in a Fourier series, one obtains

Sin(2rf, d) = -4_-_ (-1)'_ sin[27r(2n + 1)f,_t]
,-r 2n + 1

t_=O

(2)
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where f,_ is the subcarrier frequency. The power of any

odd harmonic is proportional to 1In 2, as expected. The

exciter limits both the BLK-III/BPA and the ARX II to
the first harmonic of the signal. In tile Block-III Receiver,
the noise bandwidth allows the first and third harmon-

ics of the reference subcarrier to heterodyne the noise to

baseband, resulting in a noise degradation of

1

BLK-III noise degradation = ] + 1/32 - 0.9 = -0.46 dB

(3)

On the other hand, the ARX-II noise bandwidth allows

the first through the ninth harmonics of the reference sub-

carrier to heterodyne the noise to baseband, resulting in a

noise degradation of

ARX-II noise degrad. =
1 + 1/32 + 1/52 + 1/72 + 1/92

= 0.845 = -0.73 dB (4)

Removing those degradations from the measured SERSN R
loss for both the BLK-III/BPA and ARX II, one obtains

the dashed lines in Fig. 3(a) at 537.6 ksps, which are in to-

tal agreement with the SERSNR loss at lower data rates. If
the exciter bandwidth limitations had been known before

the tests, the received subcarrier in the ARX II would have

been mixed with a pure sine wave, resulting in 0.73-dB im-

provement over the measured performance of the ARX II

with a square wave and a 0.46-dB improvement over the

BLK-III/BPA combination. The ARX II can heterodyne

the received subcarrier with a square wave, a sine wave, or
a filtered square wave such that only the first K harmonics

are passed. As an example, the received subcarrier can be
mixed with the combination of first and third harmonics

only. All this processing can be controlled by a software

command and can be changed on the fly. In case the filter-

ing on the subcarrier is unknown to the receiver, several
combinations can be experimented with in the receiver in

real time and the one providing the best performance uti-

lized. This additional flexibility is easily obtained in digital

implementations and guarantees that the local subcarrier
is "matched" to the received one.

ill tile SNR estimates. Tile problem resulted froul [,WO

missing samples in the signal power estimate, thus, de-

grading more at the higher symbol rates. The problem
was not fixed in time for these tests, but will be fixed in

the next board version. Figure 6 depicts the SSNR loss as

estimated by the SSNR estimator and the SERSNR esti-
mator for both the ARX II and the BLK-III/BPA combi-

nation. Both estimators seem to agree to within 0.2 dB

in the BLK-III/BPA combination, except at the lowest
rate where the difference was about 0.6 dB. In the AI/X-II

case, the agreement was within roughly 0.4 dB, except at

the highest rate where the estimates diverged by as nmch
as 1 dB. More tests will be conducted in the next imple-
mentation of the estimator to obtain better results.

D. Performance of the ARX II With Pioneer 10's Signal

The last set of tests were specific to the Pioneer 10

spacecraft, which transmits the lowest symbol rate of

32 sps with the weakest received signal of roughly Pr/No =

20 dB-tlz using the 70-m antennas. The t.elemetry con-

figuration tests for Pioneer 10 are shown in Table 3,

where three different values of Pc�No were used, namely,

13 dB-Hz, 11 dB-ttz, and 9 dB-Itz. The ability of narrow-

ing the carrier loop bandwidth of the ARX II is clearly

shown in Fig. 7(a), where as much as an additional 1.4-dB
improvement in SSNR has been obtained over the BLK-

III/BPA combination. In CTA21, the optimum loop band-

width obtained was about 0.5 ttz due to the possible pres-

ence of significant phase noise. Some of these measure-
ments were repeated in the laboratory and the optimum

loop bandwidth was further narrowed to about 0.25 Itz,

adding credence to the theory of significant phase noise

present in CTA21. Figure 7(b) depicts the measured SER-

SNR loss and the theoretical losses assuming thermal noise

only. The carrier loss was computed from Fig. 81 for the

different loop SNRs. For the subcarrier and symbol syn-

chronization, SSNR degradation was computed, 2 respec-
tively,

D,_ = 1 - 1.0159c_,c, _r_c = 1/p,¢,

1P,c - NoB,_ 1 + No/2E,

(5)

C. Performance of the SNR Estimators

Recall that one of the objectives of these tests was to

assess the performance of the ARX-II SSNR estimator.

During these tests, the SNR estimator of tile ARX II suf-

fered from a slight hardware problem that produced a bias

1 Deep Space Network/Flight Project Interlace Design Handbook,

Vol. I: Existing DSN Capabilities, JPL 810-5, Rev. D (internal

docmnent), Jet Propulsion Laboratory, Pasadena, Cafifonfia.

2j. Statmml, DSN Receiver Losses in Galileo E3:periment, JPL

Interoffice Memorasldum 331-88.5-050 (intenla] document), Jet
Propulsion Laboratory, Pasadena, California, November 14, 1988.

143



D_y = 1- 0.2534a_y, _r_y = 1/p_y,

PD erf2 (V/_/N0)

P_ = NoBly 27r2

(6)

These formulas assume that no windowing is used in

the loops and that the windowing needs to be accounted

for by multiplying the loop variance by its correspond-

ing relative window size W. The symbol synchronization
loop was operated with W_ = 1/2 and the window is
accounted for in Table 4, which compares the various syn-

chronization effects for various operating points in the test

table. The subcarrier and symbol degradations are signifi-

cant and surpass the carrier loss in some instances. These

degradations can be reduced either by narrowing the loop

bandwidths or by employing windows [4].

During the course of these tests, the ARX-II subcar-

rier and symbol lock detectors were not tested extensively
and, as a result, require further testing. The scaling of

soft symbols from the ARX II to the TPA was performed

manually and needs to be automated in the next upgrade.
To test the performance of future systems with a 0.1-dB

accuracy, CTA21 test equipment needs to be upgraded in

order to provide an accuracy better than 0.1 dB (currently,

it is 0.5 dB). Furthermore, the CTA21 test capability does

not support SEP_ testing in excess of 1 Msps (537.6 ksps
required recording and playback of data). All of these is-
sues are areas of concern that need to be addressed in the

future.

V. Goldstone Tests

Telemetry tests with the ARX II were performed at

Goldstone in early November 1990 by tracking and de-

modulating signals from the International Comet Explorer

(ICE), Voyager 1, Magellan low and high data rate chan-
nels, and Pioneers 10 and 11. Table 5 depicts the signal

characteristics of each spacecraft tracked. Early results

seem to agree with those run in CTA21, but more exten-
sive analysis of the data is planned.

VI. Conclusion

The CTA21 tests have demonstrated the telemetry ca-

pability of the ARX II to demodulate signals with symbol

rates up to 537.6 ksps. Test results specific to Pioneer 10
show a 1.2- to 1.4-dB SERSNR improvement in the teleme-

try performance of the ARX II versus the BLK-III/BPA
combination due to the capability of the ARX II to use

narrower loop bandwidths.
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Table 4. Various synchronization losses for Pioneer 10

Configuration Symbol Subcarrier Carrier Carrier Telemetry

parameters, degradation, degradation, loop SNR, loss, loss,
dB dB dB dB dB dB

9.6 1.00 1.38
Es/No = 5 0.12 0.26

11.2 0.45 0.83

16.0 0.07 0.45
Pc/No = 13 0.12 0.26

19.0 0.05 0.43

lee/No = 3

0.15 0.33 14 0.3 0.78
Pc�No = ll

Es/No = 1
0.21 0.44 0.44 1 1.65

Pc/No = 9

Table 5. Goldstone tests

Spacecraft DS S RF Pc/No, S ubcarrier Bit Symbol S SNR,frequency, rate, rate,

frequency dB-Hz kHz bp6 sps dB

Ice 14 S-band 21 1.024 128 256 1

Voyager 1 15 X-band 25 360 600 1200 2

960 268,800 537,600 3
Magellan 15 X - band 48

22.5 40 80 14
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Appendix A

Modulation Index Setup Procedure

This procedure is used to adjust the modulation index

in the telemetry tests. Let PT denote total received sig-
nal power. Then the carrier and data powers are given

respectively by

Pc = PT cos _ A (A-l)

PD = PT sin2 A (A-2)

where A denotes the modulation index in radians. The

Block-III Receiver contains an automatic gain control
(AGC) loop which maintains a nearly constant carrier

power at the receiver's output. The carrier power is mea-

sured in a narrow bandwidth, typically a few hertz. The

voltage which controls the receiver gain is measured by

a digital voltmeter.
follows:

(1)

(2)

(3)

(4)

(5)

(6)

(7)

Tile modulation index is set up as

Tile transmitter is turned on with a "very strong"

carrier (all modulation off).

The receiver AGC voltage is read (AGC1).

A precision attenuator is added equal to the value

of the carrier suppression, which is 20 logl0(cos A).

The receiver AGC voltage is read (AGC2).

The precision attenuator is adjusted until the AGC

voltage is that of step (2), i.e., AGC1.

The modulation is turned on.

The modulation amplitude is adjusted at the TSA

until the AGC voltage reads the value of step (,1),
i.e., AGC2.
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Appendix B

Y-Factor Setup Procedure

The Y-factor setup procedure is used to adjust the
SSNR of tile received signal. It is used at both the

Telecommunications Development Laboratory (TDL) and

in CTA21. The procedure is very straightforward and re-

lies on measuring the total power (signal plus noise) of a

pure tone in a known bandwidth and comparing it to the

noise power alone in the same bandwidth. The Y-factor

(in decibels) is defined as

YF = 10 logao(1 + 10 _w_) (B-l)

where (also in decibels)

SNR = (SSNR + 10 loga0R )

- (20 loga0 sin A -t- 10 log10 B) (B-2)

where R is the symbol rate and B the bandwidth of the
Y-factor detector and A is an attenuation pad. Small val-

ues of SSNR can be precisely calibrated by Y-factoring

an artificial SSNR which is much higher than the de-

sired SSNR. An "add-pad" is then introduced between the
transmitter and the receiver after the procedure is com-

pleted. Since the "add-pad" is a discrete-step attenuator,
its finite selectable attenuation settings can be accurately

calibrated beforehand and it introduces insignificant error

to the Y-factor technique.

Intuitively, the Y-factor is the ratio of signal power plus

noise power to the noise power in some bandwidth. It can

be expressed as (NoB + PT)/NoB where PT is the total

signal power (typically the carrier power as the Y-factor

procedure is performed with tones and no modulation).
The equipment configuration used for Y-factoring is shown

in Fig. 1. One of the outputs of the Block-III Receiver is

a 50-MHz IF signal with no AGC, which is used in the

Y-factor procedure. The steps in the calibration are:

(1) Calculate the Y-factor for the desired SSNR from

Eq. (B-l).

(2) Turn the transmitter off.

(3) With the Y-factor attenuator at some reference,
measure the power level with a power meter, i.e.,

measure the noise power in a known bandwidth B.

(4) Increase the Y-factor attenuator by the value of the
Y-factor computed in step (1).

(5) Turn the transmitter on with all modulation off.

(6) Adjust the the RF precision attenuator until the
power meter of the Y-factor reads the reference level

of step (3).

(7) Add an attenuation pad in the precision attenuator,
if applicable.

(8) Turn the modulation on.

Basically, the Y-factor procedure measures first noise

power (NOB), in the absence of signal, with a power me-
ter. An attenuation exactly equal to the Y-factor is added

to decrease the power measurement accordingly. When

a tone is injected, the power meter (which is measuring

signal plus noise) should read exactly NoB if the signal

power is at the right level, i.e., the power meter is reading

NoB + PT or NoB(1 + PT/NoB) or NoB YF, but because
of the attenuation by YF, the reading becomes NoB. If the

signal is not at the right level, the signal level is adjusted

with the RF precision attenuator until the power meter
reads NoB. Actually, the Y-factor procedure produces the

correct Pc�No and, hence, the correct SSNR, since the
modulation index was set as in Appendix A.
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On Estimating the Phase of a Periodic Waveform
in Additive Gaussian Noise--

Part III

L. L. Rauch

Office of Telecommunications and Data Acquisition

Motivated by advances in signal processing technology that support more com-

plex algorithms, researchers have taken a new look at the problem of estimating

the phase and other parameters of a nearly periodic waveform in additive Gaussian

noise, based on observation during a given time interval. 111 Part I, the general

problem was introduced and the maximum a posteriori probability criterion with

signal space interpretation was used to obtain the structures of optimum and some

suboptimum phase estimators for known constant frequency and unknown phase

with an a priori distribution. In Part H, optimal algorithms were obtained for some

cases where the phase (and frequency) is a parameterized function of time with the

unknown parameters having a joint a priori distribution. The intrinsic and extrinsic

geometry of hypersurfaces was introduced to provide insight to the estimation prob-

lem for the small-noise and large-noise cases. In Part HI, the actual performances of

some of the highly nonlinear estimation algorithms of Parts I and II are evaluated

by numerical simulation using Monte Carlo techniques.

I. Introduction

The work of Part I [1] and Part II [2] is limited to

analytical results which, although they provide the struc-

ture of nonlinear optimum estimators, can give the per-

formance of these estimators only in the case of small

noise--and then not always in the case of some subop-

timmn estimators such as phase-locked loops. In what

follows, certain nonlinear estimators are exactly sinmlated

by numerical methods and their performance is evaluated

by Monte Carlo techniques. These include nonsinusoidal

waveforms with unknown phase and known frequency and

sinusoidal waveforms with unknown phase and frequency.

II. Performance of Phase Estimators With

Known Constant Frequency

For a simmoid of known frequency and unknown phase,

the probability density function given in footnote 2 on
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page 157 of [1] is easily numerically integrated, after mul-
tiplication by error squared, to obtain the mean-square

(ms) phase error of the well-known optimum estimator of

Eq. (33) of [1]. For a nonsinusoid consisting of a funda-

mental and one or more harmonics, the optimum estimator

is the maximization of Eq. (61) of [1]. Since the probabil-
ity distribution of the error is not available, the ms error

of this estimator is found by numerical methods using a

Monte Carlo technique. The results for (a) a sinusoid, (b)

a sinusoid plus third square-wave harmonic, and (c) a sinu-

sold plus third, fifth, and seventh square-wave harmonics

are plotted in Fig. 1. As the maximum slope of the pe-

riodic waveform increases with additional harmonics, tile

large-noise threshold of the optimum estimator becomes

steeper and moves to higher input signal-to-noise ratios,

as would be expected. Some insight is given by Fig. 2 of

[2] and Sections VI of [1] and VIII of [2].

It is interesting to compare the performance of a second-

order phase-locked loop (PLL) with that of the previ-

ous optinmm estimator for the phase of a sinusoid with

known frequency. The PLL filter, preceding the voltage-

controlled oscillator, is taken to be of the form (ris+r2)/s,
where rl and r2 are chosen to give a damping ratio of
1/v_. This is essentially what is used in the carrier track-

ing loops of Deep Space Network (DSN) receivers) Tile

noise bandwidth of the optimum estimator is 1/2T, where
7' is the duration of the observation interval.

For a valid comparison between the PLL and the opti-

mum estimator, the PLL must be observed at a time in-

terval T after the PLL is turned on, with an initial phase

error uniformly distributed over one cycle (and no initial
frequency error). If the PLL filter is chosen to give a PLL

noise bandwidth equal to that of the optirrmm estimator,

this turns out to be too small. In this case, the ms phase
error of the PLL is dominated by the transient responses

of the loop to the initial phase errors. This is much larger

than the ms phase error contribution resulting from the

additive noise for any useful signal-to-noise ratio. The
observation interval T is only v/'2/3r _ 0.150 of the un-

damped period of the PLL when its noise bandwidth is

equal to that of the optimum estimator (1/2T). As the

loop noise bandwidth is increased (period is decreased)
the ms phase error contribution from tile initial transients

1Actually, the denominator of the DSN PLL filter is of the form s+r,
where r is on the order of 0.001 at the smaller loop bandwidths.

decreases while the contribution from the additive noise

increases. For each input signal-to-noise ratio there is an

optimum loop noise bandwidth which minimizes the total
ms phase error of the PLL at the end of the observation
interval T.

In Fig. 2 these PLL minimum ms phase error values are

plotted together with the ms phase error of the optimum

estimator. Even at large input signal-to-noise ratios (small
noise) the PLL performance is about 9 dB worse than the

optimum estimator. The PLL results are obtained by nu-

merical solution (fourth-order Runge-Kutta) of the base-

band second-order nonlinear differential equation for the
loop phase error.

III. Performance of Optimum Estimator With
Unknown Constant Frequency

In this case the estimation algorithm consists of

choosing the frequency f in Eq. (102) of [2] to maximize
Eq. (113), supported by Eq. (103). The phase is then given

by Eq. (111). For this numerical simulation, the a priori

distribution of pha.se is uniform over one cycle and the

independent a priori distribution of frequency is taken to

be uniform over the interval (-5.5/T to +5.5/T) centered

around a given frequency. [The index in Eq. (103) runs
from -5 to +5.]

The ms phase error of the optimum estimator is given
in Fig. 3, with the ms phase error for known frequency

as reference. In accordance with the analytical result of
Eq. (96) of [2], the small-noise performance is the same as

that for known frequency. Itowever, the steeper large-noise

threshold occurs at a higher signal-to-noise ratio.

The ms frequency error of the optimum estimator is

given in Fig. 4. It is evident that the large-noise threshold
is more abrupt than that for phase error. In the case

of unknown phase and frequency, the PLL performance is

much worse than for the case of unknown phase and known
frequency, shown in the previous section.

It should be kept in mind that the results of this section

depend on the a priori distribution, above, chosen for the
unknown frequency.
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Digital Test Signal Generation: An Accurate SNR

Calibration Approach for the DSN

B. O. Gutierrez-Luaces

Telecommunications Systems Section

A new method of generating analog test signals with accurate signal-to-noise

ratios (SNRs) is described. High accuracy will be obtained by simultaneous gen-

eration of digital noise and signal spectra at a given baseband or bandpass-limited

bandwidth. The digital synthesis will provide a test signal embedded in noise with

the statistical properties of a stationary random process. Accuracy will only be de-

pendent on test integration time with a limit imposed by the system quantization

noise (expected to be 0.02 dB). Setability will be approximately 0.1 dB. The first
digital SNR generator to provide baseband test signals is being built and will be

available in early 1991.

I. Introduction

Spacecraft link performance optimization has always
been a requirement for the missions supported by tile Deep

Space Network (DSN). This optimization relies on accu-
rate predictions for the degradations (and losses) encoun-

tered in the different modulation and detection processes
in use in the telecommunications link. Mathematical mod-

els for these processes are usually available beforehand, to

be later verified by tests run at the Telecommunications

Development Laboratory (TDL), the Compatibility Test

Area, and sometimes at the DSN stations.

Figure 1 represents the Signal Processing Center (SPC)

portion of a typical DSN communications link. The pa-
rameters of interest to be considered are:

Carrier SNR = Pc�No (1)

Symbol SNR = STs/No (2)

with

Bit SNR = STb/No (3)

Pc = the portion of received power in the residual
carrier

S = the portion of received power in the modulation
sidebands

Ts = the symbol period

Tb = the bit period

No = the noise spectral density

Note that the above parameters, to be referred to gener-

ically as SNR, may also be considered as the residual
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carrier power, energy per symbol, and energy-per-bit to

spectral-noise-density ratios, respectively.

Calibration of telemetry system losses and SNR degra-
dation 1 has traditionally been performed with the well-

known Y-factor method [1]. Different error sources come

into play depending on whether the calibration is per-
formed in the carrier or in the modulated part of the trans-

mitted spectrum. In [1], these error sources have been

identified and quantified with a final worst-case error of
+0.45 dB. Reported accuracy of the manual method varies
from 0.3 dB at the TDL to 1 dB at the DSN stations.

To improve the accuracy and to automate the measure-

ment process, a method has been developed to digitally

synthesize the precision test signal. The signal-to-noise ra-
tios obtained are then independent of gain variations, and

fidl knowledge and control of waveshapes and the modula-

tion index can be achieved. As shown in Fig. 2, calibration

of the degradation and losses of the different processes are
performed as in the traditional Y-factor method. Cali-

brated SNR and bit-error rate (BER) of signals input to

the device under test are compared to the observed SNR

and BER of the signals the device outputs. The advan-
tage of the digital SNR generator (DSG) approach is that

the SNR-generation process is truly stationary. Therefore,

long integration times can be used to obtain the accuracy

and precision needed. Details of this approach will be de-
scribed in the following paragraphs.

II. DSG Description

Tile DSG, as shown in Fig. 2, will generate test signals
at baseband (BB). The design allows the generation of an

intermediate frequency (IF) to be upconverted, as a future
option, to tile desired radio frequency band. Note that the

baseband spectrum may correspond to coded or uncoded

data. Figure 3 is a flowehart describing programmable ca-

pabilities of the DSG. It also shows the basic software func-

tions for the baseband spectrum generation mode. These
basic functions will also be common to all the other modes.

For coded data, the DSG will accept the encoded symbols

fi'om some external encoder, e.g., the Test Support Assem-

bly (TSA) in the SPC environment as shown in Fig. 4.

Figure 4 also shows the other DSG components: a SNR

generator box (SGB) being built by the Radio Frequency

and Microwave Subsystems Section (Section 333), a per-
sonal computer (PC) or workstation, and a synthesizer--

I Deep Space Network Flight Project Interface Design Handbook,
JPL 810-5, Rev. D (internal document), Jet Propulsion Labora-
tory, Pasadena, California.

the latter two being off-the-shelf. The SGB generates the
different signal spectra, including IF, dual subcarrier, or

quadrature phase-shift key (QPSK). The monitor and con-

trol, as well as other signal-processing programs, will reside
in the PC or workstation. Commands will be transmitted

to the SNR generator box CPU (SGB-CPU), which in turn
will configure the special high-speed hardware needed to

generate the output calibrated signals. A programmable

frequency synthesizer will generate the variable system

clock needed by the high-speed hardware. When the DSG
is installed in the DSN-SPC environment, an external in-

terface to the TSA may be used, providing the added

capability of coded data, simulated Doppler, and other

spacecraft-unique parameters which are already available
in the TSA.

Figure 5 shows in block diagram form the main func-

tions assigned to each board residing in a Multibus-I chas-
sis in the SGB. Three channels with identical hardware

(pattern generator, filter, and attenuator) will be used to

generate two baseband-filtered data channels (channels 1
and 2) of subcarrier binary phase-shift keyed data (BPSK)

and one channel of lowpass-filtered noise (noise channel)

to be subsequently added to produce an analog output

ST(t) = dl(t)Sin W, elt + d2(t)Sin w, e2t + NBB(t) (4)

where

W_cl,2 = the first or second subcarrier frequency, rad/sec

dl,2 = the first or second baseband-filtered data process

-NBn = the baseband-filtered noise process

Sin x = sign[sin(x)] or sin(x)

Single channel generation will be attained by elimina-

tion of one of the data channels from Eq. (4).

In case of residual carrier generation, channel 1 will gen-
erate the carrier, channel 2 will generate the modulation,

and the noise channel will generate the bandpass-filtered
noise.

Therefore, the filtered output of the DSG in this con-

figuration will be

ST(t) = cos®(t) sin wet + re(t) sin ®(t)coswet + NBe(t)

(5)

where
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wc = the carrier frequency, rad/sec

O = the modulation index

NBp = the bandpass-filtered noise process

re(t) = the modulation signal

If QPSK signal generation is desired, channel 1 will gen-

erate the bandpass-filtered in-phase component, channel 2

will generate the bandpass-filtered quadrature component,
and the noise channel will generate the required bandpass-

filtered noise. The filtered analog output of the DSG will
therefore be

ST(l) = di(t) sin w_t + dQ(t) cos wct+ NBpt (6)

A concise description of the DSG's different functions fol-

lows. Refer to Fig. 5 for architectural details.

A. Pattern Generation

The pattern generator, when configured to generate

noise, will accept data bytes (from the SGB-CPU through

the Multibus-I interface) to be mapped into a random-

access memory (RAM). After the RAM has been loaded,

it will be sequentially read by a random-address gener-
ator whose output will represent the RAM's address to

be accessed. This random-address generator will be a

pseudonoise (PN) code generator with inherent uniform

output distribution and a very long period (longer than
24 hours). The distribution function of the data bytes

mapped into the RAM in conjunction with the uniform dis-
tribution function of the addresses with which this RAM
is read will determine the distribution function of the

noise generator output. Usually the distribution function

mapped into the RAM will be a Gaussian or normal distri-

bution quantized to B bits from the corresponding analog
probability function

f(X;U,8) _-- 1/(SV/_)e-1/2[(X, -- U)/8] 2 (7)

with u = 0 for unbiased noise and s = standard deviation.

The discrete probability function will therefore be

Pa(xa; u, s) = 1/2{erf[(xd + 0.5 -- u)/(V_s)]

- erf[(xd - 0.5 - u)/(,/Ts)]} (s)

for zaE{-(L-2),...,-1,0,1,2,...,(L-2)},

Pa(xa;u,s) = i/2{l+erf[(xa+0.5- u)/v_/s]} (9)

for xa = -L - 1, and

Pa(xd;u,s) = 1/2{1 + erf[(xd - 0.5 - u)/v/2/s]} (10)

for Xd = L - 1, where the subscript d denotes discrete. In

addition, for B = number of bits including sign

L = 2 (B-l) (11)

s < L/3 (12)

From [2],

1 + erf[(x - u)/(svf2)] =

F1/(sv_r) e-1/"[(t- u)/s]2dt
0(3

(13)

ond

erf(-x) = -erf(x) (14)

In the present breadboard design

B=8, L=128, s<43, and u=0 (15)

and the output noise sequence, No(n), will be normally

distributed with statistical parameters defined by the map-

ping itself and mainly dependent on the uniformity of the
random-address generator and not on its autocorrelation
function.

The pattern generator may also be programmed to gen-
erate a subcarrier frequency and a data pattern. In bo(h

cases, special waveforms or encoded (convolutional, Reed-
Solomon, etc.) data sequences may also be mapped into ei-

ther RAM. The possibility of generating very long random

data sequences is also available by reading the data RAM

with the random address generator, as in the case of gener-

ating random noise. The normal configuration will be the
sequential reading of the data mapped into the RAM. The

time sequences derived by the sequential reading of both

data RAM, d(n), and subcarrier RAM, Sc(n), are nmlti-

plied at the system clock rate (T_u,) to obtain a BPSK
modulation sequence

D(n) = d(n)Sc(n) (16)

It was considered that a data pattern of 65,536 bits would

be the maximum length ever to be required; therefore, the

RAMs implemented will be 64K RAMs.
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B.DigitalFilteringandAttenuation
The main purpose of this digital filter and attenuator

circuitry will be to provide a user-defined lowpass filter

when generating a baseband spectrum, or a bandpass filter

when generating an IF spectrum. Noise and data will be

independently filtered by two digital filters. These filters

may have, if desired, the same frequency response, in which
case the output difference equation [3] will be for the data

path:

Dl(n) = h(O)D(n) + h(1)D(n - 1)

+ ... + h(N - 1)D(n- N + 1) (17)

and for the noise path

Nol(n) = h(0)N0](n) + h(1)Nol(n - 1)

+ ... + h(N - 1)Nol(n -- N + 1) (18)

with h(n) = finite impulse response (FIR).

A 63-tap FIR filter (N = 63) will be implemented. The
user may define the filtering process independently for each

noise or data path by simply modifying the coefficients

h(n). Filter coefficients' definition will be attained by DSP

software residing on the workstation or PC (refer to Fig. 4).

After independent filtering, the noise and data outputs are

properly scaled (attenuated) and added to generate the
desired symbol SNR on the output sequence

ST(n) = ADDI(n) + AyNol(n) (19)

with An _< 1 for the signal path attenuator factor and

AN __ 1 for the noise path attenuator factor. Note that,
due to this independent filtering and individual attenua-

tion, the filtered data spectrum will be known. This pre-

cise knowledge provides the basis for optimum subcarrier

and data demodulation processes [4] to be performed later

on the statistics function. The DSG SNR output, or equiv-

alently the SNR input, to the demodulator under test will,

thus, be continuously monitored by this optimum process.

C. Digital-to-Analog Conversion

The DSG will provide a digital output for baseband syn-

chronous testing and, through the digital-to-analog con-

version function, an analog output for a more general asyn-

chronous type of testing. Therefore, the input sequence

Eq. (19) containing the subcarrier, data, and noise at the

system clock rate is converted to the analog representa-

tion in Eqs. (4), (5), or (6) by a digital-to-analog converter

(DAC). This DAC is the element dictating the number of
bits to be used in the DSG design. Bandwidth require-
ments limited to 12 the number of bits to be used at the

time of design definition and will be the quantization used
in the prototype demonstration. The DAC analog output

spectrum will be rich in harmonics that have to be attenu-

ated by an output analog filter. The amplitude, and more

important, the phase characteristics of this filter have to

be very well controlled in the design in order to conserve
the input spectrum characteristics. The effect on SNR
of several Butterworth filters with numbers of poles rang-

ing from three to nine were simulated with the conclusion
that in the worst case, to obtain less than 0.1-dB output

SNR degradations, a three-pole Butterworth filter should
be used.

D. Statistics Monitor

The DSG will be used to calibrate SNR measurements

and losses on other signal processes; therefore, several sta-
tistical measurements have been implemented through the
statistics' monitor function. The same statistical measure-

ments will be implemented in the digital output, as well as

in the analog output. Note that the digital output time se-

quence Eq. (19) is directly brought to the statistics board

where an optimum subcarrier and data demodulation is

performed by digital multiplication of this time series by
an exact replica of the data spectrum embedded in that

output

S(n) =ST(n)ADDI(n) (2o)

where the delay of the digital hardware has been arbitrarily

set to zero due to its precise knowledge.

The result of that multiplication is accumulated in the

symbol integrator and dump for exactly a symbol period

(Ts), related to the system clock period (Tsu,) by the re-

lationship

Ts = IsT,_, (21)

where Is is an integer.

Therefore the ith symbol integrated value will be

ils

s, = S(n)
n=(i-1)Is+l
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ils

E [AD2DI2(n) -t- ADANNo](n)DI(n)]

n:(i- 1)Is+1

(221

Note that all statistics are performed in this integrated

symbol output, Si. Thus, the mean value of the detected
symbols will be calculated on the SGB-CPU from results

of the symbol value accumulator obtained for a fixed num-

ber of symbol periods (K) completing approximately one

second of elapsed time

K

-S= IlK E Si (23)
i=1

Simultaneously, the squared value of the detected symbol

is also accumulated in the symbol squared accumulator for

the same number (K) of symbols

K

-_2 -_ 1�If E Si2 (24)
i=1

From these two values the symbol SNR evaluation imme-

diately follows (in decibels)

= (25)

The last measurement made in this output is the symbol
error count in the symbol error accumulator. This mea-

surement is arrived at by just counting the output negative

events in the same period of time (KTsg, Is).

K+i

SER = 1/K E neg[Si] (26)
i

with

neg[Si] = 1 if Si < 0

neg[Si] = 0 if Si > 0

(27)

In order to characterize the hardware performance, a his-

togram accumulator will be implemented, thereby provid-

ing a straightforward method to confirm the actual prob-
ability density function of the filtered or unfiltered noise

from Eq. (18). Statistics on data and subcarrier waveforms

can be performed and will be used as a hardware-software
performance verification self test.

To calibrate the analog output SNR, the first function
to be performed is the digital conversion of the analog out-

put. In the case of baseband or IF testing, the analog-to-

digital conversion is performed directly on the DSG ana-

log output through a 12-bit analog-to-digital convertor. In

the case of higher frequency spectra, a downconversion will

precede the analog-to-digital conversion, as shown previ-

ously in Fig. 2. In both cases, the delay introduced by the

analog circuitry, T, has to be accounted for. This delay

(T) will not necessarily be an integer number of system

clock cycles (k), but rather will have also a fractional part
(r)

T = kT, u, + r

Therefore, after removing the integral part of system clock

cycles, kT_us, Eq. (22) will now be

ils

s, = F_, S(n)
nm(i--1)ls+l

ils

E
n=(i-1)Is+l

[AD_DI(n)DI(n + r)

+ AnANNof(n)D.t(n + r)] (28)

To account for this unknown fractional delay, r, a delay

line of 2-nsec steps will be implemented. SNR degradation

due to these quantization steps will be (in decibels)

ASNr¢ = 201ogl0(1 -- 2T/Ts) (29)

with r = delay quantization and Ts = symbol period.

In any case, this degradation will be calibrated through

the autocorrelation function Eq. (28) obtained with 2-nsec
quantized steps.

III. Error Analysis

Whenever practical, tile error contributions to the SNR

generation were evaluated by analysis or computer sinmla-

tion (A). If impractical, an engineering judgment approach

(EJ) was taken. The expected errors on the setability and
the actual measurement of the DSG output SNR are sum-
marized in Tables 1 and 2. The total error contribution

will be verified when the design is completed. Individual

errors will also be measured whenever possible.

Tile errors to be encountered when a given SNR is de-

sired in the analog output, assuming a memoryless DSG,
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have been summarized in Table 1. Note that subsequent

SNR settings may be known with the accuracy deduced
in Table 2 when the operator takes advantage of the accu-

racy provided by the SNR monitor (the operator has now

provided memory to the process).

The digital output monitoring error will be mainly pro-

duced by the deviation from a perfect uniform distribution

of the PN generator addressing the Gaussian noise RAM
and the quantization noise of the digital process. Both

have been quantified in Table 1 for one-second integration
times with an evaluated error of 0.01 dB for the nonuni-

fortuity of the random-address generator. This error will

diminish as the integration time is increased, with a limit
imposed by the quantization noise (0.002 dB). Therefore,

the accuracy of the digital SNR measurement will only

be dependent on the integration time used to obtain that
measurement, or equivalently on the number of samples

used in the computation with a lower limit imposed by the

quantization noise of the digital process--in the present
case 0.002 dB. Confidence intervals can be found if the cu-

mulative distribution function of the SNR measurement is

known. It has been shown [5] that the distribution func-
tion of the SNR measurement, Eq. (25), is a noncentral
F-distribution. The cumulative distribution of this func-

tion may be approximated by the standard normal distri-
bution function as follows:

F(SNRM) = P(z) = 1 e -1/2t_ dt
00

(30)

with

x = (nl - n2)/(dl + d2) 1/2 (31)

nx = [(N - 1)SNRM/(1 + N SNRT)] U3

x {1 - 2/[9(N - 1)]} (32)

.,= 1-{(2 +4x SNR )/[9(1 + x (33)

dl = (2 + 4N SNRT)/[9(1 + N SNRT) 2] (34)

d2 = 2/[9(N- 1)][(N-1)SNRM/(I+N SNRT)] 2/3 (3.5)

N = the number of samples in the measurement

SNRT = the true SNR

SNRM = the measured SNR

Figure 6 is a plot of Eq. (30). It gives the cucnulative

probability distribution of measuring tile SNR (SNRM)

within 0.1 dB of the true SNR (SNRT) as a function of
the number of samples used in the measurement. SNRT

has been used as the parameter.

Table 2 summarizes the error budget for the SNR mea-
surement on the analog output.

IV. Capabilities

Table 3 summarizes the capabilities of the present

breadboard design. When the DSG is configured to gen-
erate a baseband spectrum, it will be able to provide two

data channels with or without subcarrier, or two biphase
data channels in a total baseband bandwidth of 10 Mttz

(de to 10 MHz). If the DSG is configured to generate a

bandpass spectrum it will be able to provide a residual car-
rier up to 5 Mttz with one data channel with or without

subcarrier, or one QPSK or one offset QPSK (OQPSK)

data channel, or two data channels (carrier suppressed) in
a total bandpass bandwidth of +5 Mttz.

The frequency generation on the DSG is related to the

system clock rate (fi, us) in use. The subcarrier frequency
(fs¢) or intermediate frequency (IF) will be generated with

a variable frequency resolution ranging from f.,y_/217 for

the highest frequencies (5 MHz) to fsu,/23_ for the lowcst

(100 IIz). The data period (Ts) will be related to the

system clock period (T_u,) by

T_u, = Tslls (36)

with

21 < 1'3 < 224 (37)

and

T,v, = system clock period = 1/fju ,

Ts = symbol period

and 2 MIIz < (1/T,v, = f,u,) < 20 Mtlz
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An external DSG mode is provided. In this mode, the

data waveform (or the subcarrier biphase modulated by

the data) is externally generated and sampled at the sys-

tem clock rate fsvs. In general, the frequencies involved
will not be coherently related. Note that the mean fre-

quency derived from this, in general, asynchronous sam-
piing process will still correspond to tile data rate (or

subcarrier and data) required. Because of knowledge of

the asynchronous sampled data spectrum, the DSG SNR-

monitoring process will provide an optimum demodulation

independent of tile sampling process. This will not gen-
erally be the case of the demodulation process under test

wheu the symbol clock is synchronous with the incoming

symbol or with the mean symbol rate. In this case, the

synchronous detection will expect symbols with exactly

the same period and not the jittery ones being provided.

Tile worst-case degradation of such a process will be quan-
tified as follows.

Assume that a periodic signal (fsc) is sampled at a fixed

sampling rate (fsvs). The resulting frequency spectrum is
composed of spectral lines (fH) related to the sampling

frequency by

f- =l '_fsc - mf,_, I (38)

with n and m__integers.

Assuming, for simplicity, that the sampled periodic sig-

nal (fs_) is a square wave, the useful spectral lines in
a subsequent symbol synchronous demodulation process

will only be those corresponding to the odd harmonics of

the corresponding Fourier series with corresponding total

power

Psq = _ [2A/(i_)]: (39)

for (i = 1,3, 5,...). Tile remaining alias harmonics given
by Eq. (38) may, in the most general sense, be treated

as unwanted noise in the subsequent symbol synchronous

demodulation process. Given a Nyquist bandwidtb, if tile

useful square-wave signal power is

N

i

(4o)

for (i = 1,3 5,...,N) with

Nfs_ < 1/2f_>, (,I1)

and the total available power is PT, then the available SNI{

on the square wave (or subcarrier SNR) is defined as

SNRSqN = 10 loglO[PSqN/(PT -- Psq,v)] (,12)

The above process was computer simulated for 20 equally

spaced subcarrier frequencies (0.0977 Mllz to 4.7363 Mllz)

and a system clock of f,v, = 20 MIIz. Results are shown

in Fig. 7. Note that discontinuities will exist due to the

changing number of odd harmonics in the ideal rectangular

Nyquist filter.

Other discontinuities will exist at subcarrier frequen-

cies (fse) corresponding to an exact even subnmlt.iple

(2, 4, 6,...) of the system clock rate (f.,v,). In this case,

the sampling process becomes synchronous and the avail-
able SNR becomes infinity (oo) at those particular fl'e-

quencies. This synchronous mode will have to be used for

calibrations of data rates higher than 2 MS/sec (1-Mllz

square wave). All the required operations in the external

mode will be transparent to the DSG operator and will be

automatically software-controlled.

V. Conclusions

A digital synthesis method to generate bandlimited test

signals with precise signal-to-noise ratios has been de-

scribed and the expected errors have been quantified. De-

sign of appropriate hardware and software to demonstrate

the performance of this method has been initiated. The
DSG is expected to replace tile presently used Y-factor

method with improvements on testing time, accuracy, sta-

bility, and repeatability.

167



Acknowledgments

The author wishes to thank B. Parham, C. Chang, L. Itoward, and M. Marina

for their contributions to tile detailed design and enthusiastic dedication to the

breadboard construction of the proposed SNR generator. The author also thanks

J. Statman and T. Peng for suggestions in tlle process of reviewing this article.

References

[1] W. S. Baumgartner, N. C. Ham, W. F. MeAndrew, D. W. Brown, M. L. Yeater,
C. A. Holritz, J. T. Hatch, and A. D'Amore, "Multiple-Mission Telemetry System

Project," JPL Space Programs Summary 37-60, vol. II, pp. 152-169, August
1970.

[2] M. Abramowitz and I. Stegun, Handbook of Mathematical Functions, Applied
Mathematics Series, Washington, D.C.: National Bureau of Standards, December
1972.

[3] L. R. Rabiner and B. Gold, Theory and Application of Digital Signal Processing,
New Jersey: Prentice-Hall, Inc., 1975.

[4] R. Sadar and W. J. Hurd, "Detection of Signals by the Integrate-and-Dump Filter

With Offset Sampling," TDA Progress Report 42-91, vol. July-September 1987,

Jet Propulsion Laboratory, Pasadena, California, pp. 158-173, November 15,
1987.

[5] W. H. Tranter and M. D. Turner, "Signal to Noise Ratio Estimation in Digi-
tal Computer Simulation of Lowpass and Bandpass Systems With Applications

to Analog and Digital Communications," NASA Contract No. NAS 9-14848,

Missouri: University of Missouri at Rolla, July 1977.

168



Table 1. Satsblllty error budget (worst case)

Error dB Source

RAM (64K, 8-bit) resolution 0.04 A

PN generator uniformity 0.01 EJ

Quantization noise 0.002 A

DAC nonlinearities 0.01 A

DAC frequency response 0.01 A

System clock phase jitter 0.02 EJ

Analog filter 0.1 A

Amplifiers 0.01 EJ

Total error on SNR setting 0.11

(root sum square, rss)

Note: Evaluated by: (A) analysis or computer simulation
(E J) engineering judgment

Table 2. Analog output monitoring error budget

Error dB Source

Quantization noise 0.002 A

System clock phase jitter 0.02 EJ

ADC quantization noise 0.002 A

ADC nonlinearities 0.01 A

Waveform distortion 0.01 A

Total error on SNR monitor (rss) 0.02

Note: Evaluated by: (A) analysis or computer simulation

(E J) engineering judgment

Table 3. Summary of DSG capabilities

Function Capability

System clock

Analog power output

Noise density distribution

Noise bandwidth

Noise autocorrelation period

Baseband external input

Symbol SNR

Setability

Accuracy and stability

Range

Data types

Data rates

Modulation types

Data pattern

Data transition density

Frame synchronization word

Frame length

Subcarrier or IF fi'equencies

2 to 20 MHz

7 dBm (50 olmas)

Gaussian

0.1 to 10 MHz

> 24hr

TSA compatible

0.1 dB

5:0.05 dB

-6 to 20 dB

Nonreturn to zero;
biphase; QPSK; OQPSK

4 S/sec to 6.6 MS/sec

Phase-shift keyed

2048 and 16,384 PN code

10; 30; 50; 70; and 100%

Up to 64 bits

Up to 65,536 bits

100 Hz to 5 MHz
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A Comparison of Manchester Symbol Tracking Loops for

Block V Applications
J. K. Holmes

Radio Frequency and Microwave Subsystems Section

The linearized tracking errors of three Manchester (biphase-coded) symbol track-

ing loops are compared to determine which is appropriate for Block V receiver

applications. The first is a nonreturn-to-zero (NRZ) symbol synchronizer loop op-

erating at twice the symbol rate (NRZ x 2) so that it operates on half-symbols.

The second near optimally processes the mid-symbol transitions and ignores tile

between-symbol transitions. In the third configuration, the first two approaches

are combined as a hybrid to produce the best performance. Although this hybrid

loop is the best at low symbol signal-to-noise ratios (SNRs), it has about the same

performance as the NRZ x 2 loop at higher SNRs (> O-dB Es/No). Based on this

analysis, it is tentatively recommended that the hybrid loop be implemented for

Manchester data in the Block V receiver. However, the high data rate case and the

hardware implications of each implementation must be understood and analyzed

before the hybrid loop is recommended unconditionally.

I. Introduction

Three symbol-synchronization (sync) loops have been

studied with the object of determining which structure

provides the best tracking performance in terms of the

minimum tracking error variance of the linearized loop:

(1) The nonreturn-to-zero (NRZ) digital data transition

tracking loop (DTTL), which operates at twice the

Manchester symbol rate (or at the equivalent NRZ

symbol rate).

(2) A symbol-sync loop based on a near-optimal pro-

cessing of the mid-symbol transition. The between-

symbol transitions are ignored by this loop.

(3) A hybrid of loops (1) and (2). The mid-symbol tran-

sition processing is based on the second candidate

loop and the between-symbol transition processing

is based on the DTTL, in which a transition is es-

timated from the half-symbol on either side of the

between-symbol transition.

Other possibilities exist, but these three seemed most

relevant and more readily analyzable.

To make the analysis somewhat simpler to accomplish,

the assumption was made that the symbol tracking loops

are continuous in time and amplitude. Thus, the results

given here would apply to the Block V digital receiver only

at the low and medium symbol rate cases, and not to the

high symbol rate case where as few as three samples can

occur per half-symbol.
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II. Analysis of DTTL Tracking Error
Variance Operating at 2R s
In this section the continuous-time linearized closed-

loop tracking performance (expressed in fractions of sym-

bol time) is estimated_ The symbol tracking loop under
consideration is an NRZ DTTL, which works on the NRZ

symbol transitions to detect the timing error. Figure 1

shows a block diagram of the NRZ DTTL operating at

twice the symbol rate (2Rs) so that it is suitable for track-

ing Manchester (biphase) signal formatting. Note that be-
cause false lock can occur on any Manchester-coded sym-

bol tracking loop, a false-lock detector nmst be used with
Manchester data.

In Fig. 1, _- denotes the symbol loop estimate of the

symbol stream transmission delay and W is the window
size in seconds used for the error-detection window.

Basically the loop performs one integration over one

complete half-symbol (TH sec) and another across the time
where the transition could occur. When the transition is

mid-symbol, a transition always occurs; when the transi-

tion is at the end of the symbol, a transition may or may
not occur.

The input is modeled as an infinite sequence of Man-
chester symbols with transitions determined by the esti-

mate of the half-symbol sequence ak. In addition, the

thermal noise corrupts the symbol stream.

Thus, the received signal is modeled as

V(0=_ _ b_q(t-kT-rl+n(t)

k=-oo

(1)

where

q(t) is one Manchester symbol

n(t) is modeled as white Gaussian noise (WGN) with
spectral density No/2

bk is a random binary valued (+l) symbol sequence

TH is the symbol half-period (T = 2TH)

T is the symbol period

P is the data power in the received signal

v is the time delay of the signal

is the time-delay estimate of the symbol sync loop

The relationship between the half-symbol ak and full-

symbol data bk sequence is given by

ak = bk/2, k even

Jak = --bk/_.-1/_, k odd

(2)

and is illustrated in Fig. 2. The general approach used
in [1] is followed and it is assumed for convenience that
"r_0.

The inphase channel produces an output pulse sequence

estimate, which, for r -/" close to zero, is essentially given

by

6k = SGN
(k+l)TH

ak VZ-'PTH + n(t)dt

kTH

,

(3)

where k is the index on half-symbols. The output of the
transition indicator is given by

fik - _k-1
Ik - 2 (4)

At the end of the kth pulse time, the midphase channel

produces the following output 1 when r-7: _ 0 (and r = 0):

k TH + I,V / 2

Uk = 2ak-lv/ff(r - i-) + f n(t)dt, Ir - +i _<I,W2

kTH-W/2

(5)

Consequently, the timing-error estimate g, which is the

loop estimate of the timing error e = 7-- _, is given by

oo

= z, G p(t - (k + 0T.) (6)
k=-co

which changes every Ttt seconds. Now p(t) is a half-

Manchester pulse of unity amplitude (see Fig. 8) and U_
is the (TH - W/2)-sec delayed version of Uk. It is used

to align the midphase and inphase channels in time. This

error signal is constant over TH sec in Eq. (6). Using
Eqs. (4) and (5) in Eq. (6), the expression for the loop

error signal is obtained:

1 The timing error is neglected in the noise term but included in the

error-signal term.
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_(t) : ak a_ - ak-, 2v'7(r- +)
k 2

+
( "2_lk-- ak-1) kTH+W/2n(t)dt}f

kTH - W/2

x p(t - (k + 1)TH) (7)

It will be shown that the mean value of g is given by a¢

(linear) for small values of e; the resulting additive noise

process is denoted by N(t). Both can be determined from

Eq. (7) since the noise is a random amplitude pulse se-
quence process. It is assumed that e is small in the fol-

lowing discussion. Then the timing estimate i- is given

by

+ __ KF(s) [ae + N(t)] (8)
S

where F(s) is the loop filter expressed in Heaviside oper-

ator symbolism (1/s)X(s) denotes ft x(t')dt' and repre-

sents the effect of the voltage-controlled oscillator (VCO).

Since by definition of the error

+ = _-- _ (9)

Using Eq. (9)in Eq. (8) yields

_(t) = (1 I_('F(s)ls "_+K'F(s)ls) (-_'_) (10)

where F(s) is the loop filter function viewed as a Heaviside

operator and the 1/s comes from the VCO. The terms that

depend upon s comprise the closed-loop transfer function;

it is denoted by n(s), so that Eq. (10) becomes

(11)

where again H(s) is viewed as a Heaviside operator oper-

ating on the noise term following it.

Next it is necessary to characterize the noise process

N(t) and the constant c_. First consider the computation
of E[gIE ]. For small timing errors, it will be assumed that

the value of dk is statistically independent of the integrated

noise process (integrated from kTH - W/2 to kTH + W/2).

Of course, this is not true but it has been demonstrated

by simulation to be a reasonable approximation [2]. With

this assumption, Eq. (7) can be used to obtain

E[glg] _- 2V-fi(c)

mid-symbol transition

r

adjacent

symbol transition

+I(_){(1-PEH)2-PE_}]
(12)

where the two leffmost 1/2 factors in the rectangular

brackets are due to the probability of the transition being
a mid-symbol transition or an adjacent symbol transition.

The factor of unity following the first factor of 1/2 accounts

for the fact that there is always a mid-symbol transition.

The factor of 1/2 following the second leftmost factor of

1/2 is based on the assumption that there is a probability
of 1/2 that there is a transition at the end of the symbol.

Finally, PEH is the probabilty of a half-symbol error and

is given by

where

1 -z_/2 dz=Q( 2_-_H) (13)

EH PTH

RH - No No (14)

where

P is the data power

No is the one-sided noise spectral density at the symbol

sync input

Tit is one-half the symbol duration

IIence, from Eqs. (12) and (13)

E[gk] --- 7,f-fi_ - (15)

This can be rewritten as
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E[g[¢]- _v_eerf(v/_H) = _v/-fe \2 J -_e dt)
o

(16)

Thus, a of Eq. (8) is given by (a = the slope of the S-curve
at e=0)

= _ 4-fi erf(x/h--_.) (17)

Now the noise spectral density of NE(Q is obtained from

the process generated by

kTM+W]2

wE(0= _ / n(t)dt a_-ak_l_.
k=-oo kTH-W/2

x p(t - (k + 1)TH) (18)

where, as before, p(t) is a unit amplitude pulse of duration

TH sec long. Again assume that fik is independent of n(t),

and note that the cyclostationary process NE(t) can be

made stationary by averaging over time [3]. Thus

T

1/R(¢) = ._ E[NE(t)NE(t + ()] dt
o

(19)

is the autoeorrelation function of a stationary process de-

rived from the corresponding cyclostationary process. An

evaluation of Eq. (19) obtains

R(O- 2 1- TH] "2" for I¢l_<TH

= 0 elsewhere

(20)

where it is assumed for analytic convenience that the noise

process n(t) over W see is statistically independent of the
symbol estimate. Consider the term inside the expecta-

tion. It can be evaluated by

[( )_] [( ) ] 1 [(fik - ilk_l) 2

An evaluation obtains

mid-symbol transition adjacent symbol transition

[(dk--&k-l) ]2 1 [[ ] a[ 1_' ] 1[ ]
E -(1 - PEH) 2 "PE2H + "7= -_ +1 1 2PEH(1- PEH) + _ (1-PEH) _ + PE_I

(21)

(22)

or, simplifying 1- 2Pz. = erf(4_-?) (24)

E[Q&k-_&k-l)2] -- 3-PEH(1-PEH) (23)

Note that when PEH ---* 0, the expectation approaches

3/4 as anticipated, and when PEH ---+ 1/2, the expectation

approaches 1/2 as anticipated. Since

one obtains

_ [ (&k "_&k-1.) 2] -

Therefore

4 4
(25)
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 0w(1 1(,orf2, ))}
forI¢I_<T.

= 0 elsewhere (26)

Integrating R(() from -oc to oe yields the noise spectral

density at f = 0, which is

_N(0) = _ 1 -- 5

Thus, the absolute, linearized, tracking-error variance is

obtained from Eq. (11) to be

2_ 2BL f-_N (0)
_ a2 sec2 (2S)

where BL = fo IH(j27rf)[2df is the one-sided loop noise
bandwidth. Hence, from Eqs. (17), (27), and (28)

 Lw[1erf2( ))]
T_I 3 RH erf 2 (x/R-if)

(fraction of a symbol) 2 (29)

Let

T = 2TH (30)

to relate the half-symbol to the full-symbol duration (T).

Translating to the full-symbol period T yields the de-

sired result for arbitrary window size.

WBL

(fraction of a symbol) 2 (31)

where R = PT/No = Es/No.

The value a2/((BLT)T 2) is plotted in Fig. 3 for W =
T/4 versus R, the full-symbol SNR (Es/No), where Es

is the data symbol energy and No is tile one-sided noise

spectral density. The other loops will be discussed in the

following sections. Taking the somewhat arbitrary window

W = T/4, Eq. (31) becomes

9

a___(.;= 1
T 2 24

BLT

(32)

The relationship W = T/4 is used for all three loop

window sizes, since at high data rates this would probably
be the minimum size.

III. Analysis of the Near-Optimum

Mid-Transition-Tracking Manchester
Symbol Synchronizer

This section describes a symbol synchronizer that is

motivated by the optimum structure [4,5,6] for the mid-

symbol transition and ignores the adjacent-symbol transi-

tion. Figure 4 illustrates this symbol synchronizer.

The received signal plus noise is modeled by Eq. (1) as

y(t) = v/-'fi _ bkq(t - kT- r) + n(t)
k=--oo

(33)

with n(t) modeled as white Gaussian noise having spectral

density No�2.

In order to analyze the symbol synchronizer depicted in

Fig. 4, it is advantageous to segment the noise process into

four contiguous regions as shown in Figure 5. The bottom
portion of Fig. 5 illustrates the symbol sync reference mid-

symbol transition point integration region (solid lines) and
the actual mid-symbol transition point of the received sig-

nal (dashed lines). The pulse function q(t) is a complete

Manchester symbol and bk is the data sign (bk = :t:1) from
Eq. (1). The X-channel signal (see Fig. 4) can be written

at the end of symbol bk, as

X = vr'fi[bkT - (bk-1 + 3bk)c

+ (iV1 + N2 - N3 - N4)], _ _> 0 (34a)

179



X -- v_[b_T- (b_+l + 3b_)¢

-+ (N1 -k-N2 - N3 - N4)], _ < 0 (34b)

where it is assumed that lel (c = r-r) is less than W. Ad-

ditionally, it is assumed that ¢ is small in the computations
that follow.

The Y channel produces the signal at the end of its

integration time given by

Y = [2v_bk¢ + (N2- N31] (35)

The product Z = XY = g is the estimate of the timing

error over one pulse time and for small ¢ is given by

g(t) = 2PTeg(t) + Vrpb_T(Nu + Na)g(t)

+ (N1 + N2 - N3 - N4)(N2 + Na)g(t) (36)

where g(t) is the pulse function taking on the value of one
at each loop update (see Fig. 8). This pulse function is

constant over T sec and thus acts as a sample-and-hold

function for the loop error signal.

Equation (36) gives the conditional mean value of g

given e over one update period as

E[ele] = 2PT¢ (37)

since

El(N1 + N2 - Na -- N4)(N_ + N3)] -- 0 (38)

because

If the total noise term is denoted by NT, where

NA NB

NT = V_T(N2 + Na) + (gl + N2 - N3 - g4)(g2 + N3)

(40/

then it can be shown that the two noise components N A

and NB are independent. That is,

E[NANB] = v/-PTE[(Ne + g3)

x (N1 + N2 - N3 - N4)(N2 + N3)] = 0

(41)

since odd moments of zero mean Gaussian random vari-

ables are zero.

To obtain the loop equation, the estimate of the error
is written as

e = 2PT¢ + NTg(t) (42)

The loop timing estimate is given by

_. _ KF(s).g = KF(s)[2PT ¢ + XTg(t)] (43)
8 S

where K is the loop gain of the symbol synchronizer and

F(s) is the loop filter expressed as a Heaviside operator.
Using

r - # = c (44)

and for convenience r = 0 in gq. (43) yields

[NTg(tl
v(t) = H(s) [ 2"-_ (45)

where H(s) is the closed-loop transfer function and

KF(s)/s
H(s) - 1+ KF(s)/, (46)

When the loop noise bandwidth Bt. is small compared
to the symbol rate, the linearized tracking error can be

approximated by

4P2T 2 (47)

where _NT(0) is the spectral density at f = 0 of the

cyclostationary process NT(t), with NT(t) defined below.
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Thus, it is necessary to evaluate the spectral density of the

noise process at f = 0. The noise process can be written

as

NT(t) = _ NT(k)g(t - kT) (48)

and thus the NT(t) process is cyclostationary. It can be
made stationary by averaging over time. Thus, the auto-
correlation function of the stationary equivalent process is

given by

T

1 j E[NT(t)NT(t + _)] dtn(¢) =
0

(49)

Thus

nNT(¢) =O'2NT(1--_) for ICI_T

-- 0 otherwise
(50)

Since

,(_fNr(0) = j n(_)d( = Ta_r (51)

one has for Eq. (47) that

Evaluating cr_r yields

(52)

Cr2yT _ No WPT22 + N_WT4 (53)

Therefore, using Eq. (53) in Eq. (52), with R = PT/No,

the normalized tracking error is given by

(fraction of a chip) 2 (54)
2_BLW [ 1]

_ i +
T 2 4R

The normalized tracking error is plotted in Fig. 3. In

the comparison, W was set equal to T/4 to be consistent

with the other two loops considered here. Thus, Eq. (54)

becomes

0"_ 1 + (55)
T 2 - 16R

IV. Analysis of the Mid-Symbol- and
Adjacent-Symbol-Tracking Manchester
Symbol Synchronizer

Figure 6 shows the symbol synchronizer discussed ill

this section. The functions h(t) and 1 - h(t) are shown

in Fig. 7. The upper branch performs the same function

as the previous section and operates on the mid-symbol
transitions, ttowever, in addition, the lower section oper-

ates on the adjacent-symbol transition points. The lower

and upper sections are used to update the loop at twice

the symbol rate, unlike the loop discussed in the previous

section, which is updated every symbol time.

A. Mid-Symbol Error Detection

First consider the upper two branches of the mid-

symbol error detector illustrated in Fig. 6. A symbol and

loop timing diagram is illustrated in Fig. 7. Initially, Wn
and WM denote the between-symbol and mid-symbol win-

dows, respectively. Again the signal is modeled as de-

scribed in Eq. (1).

The signal denoted X in Fig. 6 is given (for small c) by

X = vZ-P(bkT- (bk-_ + 3bk)l¢l)

+ (NoD + N1 + N2 - N3 - N4 - N_) (56)

where the integration regions are as indicated in Fig. 8.

The Y-channel output (for small g > 0) is given by

Y = (2v/-fibk¢ + N2-4- N3) (57)

where

Wu/2

NoD = ff n(t)dt (58)
0

with the time origin taken at the point where the synchro-
nizer loop starts the kth symbol for simplicity of notation.

In addition, there are the definitions
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TI_--WMI2

N 1 ---- /

WB/2

T/2

N2 = /

TI2--WMI_

T/2+WM/2

N3 ---- /

T/2

T--WB/2

g 4 = /

TI2+WM/2

T

N5 = /

T -WB/2

n(t) dt

n(t) dt

.(t) dt

n(t) dt

n(t) dt

(59)

(60)

(61)

(62)

(63)

where h(t) is defined to be unity in the region t¢(O,T/2)

and zero in the region t¢(T/2, T). The functions h(t) and
1 - h(t) are plotted in Fig. 8 along with p(t), g(t), and q(t).

The quantities c(k), NA(k), and YB(k) are the values of

the respective variables at the kth symbol time.

Equation (66) is the contribution of the mid-symbol er-

ror detector composed of the upper two branches in Fig. 6.
Furthermore, from Eq. (65) the mean value of gl over one

symbol time is given by

E [gl ]¢] = 2PT¢ (67)

B. Adjacent-Symbol Error Detection

Now consider the adjacent-symbol transition detector

depicted in the lower half of Fig. 6:

U_ = 2b_v_(r - ?) + N5 + N6 (68)

For the upper branch of the adjacent-symbol detector, the
detected half-symbols are given by

T+WB/2

N 6 = / n(t) dt

T

(64)

Thus, the first error signal Z1 is given by

Z 1 = XY = gl

and from Eqs. (56) and (57), for small H

NA

gl = 2PT¢ + vz-fibkT(N2 + N3)

NB

+'(Noo + N1 + N2 - N3 - N4 - Ns)(N2 + N3)

(65)

over T/2 seconds. Thus, showing the explicit time depen-

dence of the error signal with time

 l(t) =
6=-00

(2PT¢(k) + NA(k) + NB(k))h(t - kT)

(66)

6UK+I= sgn[-bk(T/2 - 21¢1)+ N3+ N4 + Nh] (69)

and

(i2k+2 = sgn [bk+l(T/2 - 2N) + we + N7] (70)

In Fig. 6 a scale factor of/3x/PT has been included in the

upper branch of the lower half of the figure. Its purpose is
to make the units the same (v/fiT) for the upper and lower

halves, with a scale factor of _3 (0 _</3) used to a,tjust the

relative proportion of each error signal.

Hence, the upper branch of the between-half-symbol
transition detector denoted by Ik can be expressed in terms

of the ak sequence as

Ik = (--fi2k+ l -t- fi2k+2 ) flV/-_T2
(71)

The estimate of the error signal from the lower half is

therefore given by

g = Uklk (72)

or
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¢2 = (2bk V"-fi(r - _)+ N5 + N6)

--a2k+l + a2k+2) flV"-PTx 2
(73)

To obtain the conditional mean value of _2 conditioned

on _, a simplifying assumption is made. First, neglect

the small correlation of (N5 + N6) with a2k+a and &_k+2.

Second, assume that c is very small in magnitude. Thus,

letting e = r - f- obtains

or

E[_2le] = flPT¢(1 - 2PEH)

(74)

(75)

where the symbol error rate PEH is the same as Eq. (16),
so that

(76)1 - 2PEH = erf (_/-_)

where it was assumed that g = 0 in the expression for

PEtt. Thus,

(77)E[&Id = ¢_PTcerf (X/-R-75)

C. Tracking Performance of the Combined
Loop Signal

The total error signal that drives the loop filter F(s) of

Fig. 5 is given by

g(t) = _ flPTerf + 2PT¢

+ _ {Nl(kT)h(t- kT)
k=-oo

(78)+ N2(kT)[1 - h(t - kT)]}

where the first term in Eq. (78) is the mean value of ¢(l),
and where the second term is the noise process with

assumed to be zero. The noise terms are given by

Nl(kT) = x/'-fbkT(N2 + N3)

q- (No0 + N1 -k N2 - N3 - N4 - N5)(N2 q- N3)

(79)

and

(--{l"_k+l "4- a2k+2 )N2(kT) = 9V'FT " _ (N5 + N6) (80)

Tile symbol synchronizer forms the estimate "/ of the re-

ceived signal delay and can be expressed by

KF(s)

KF(s) PT + flPTerf ¢+_{N(t)}
-- S 8

(81)

where

N(t) =

oo

E {Nl(kT)h(t - kT) + N,,(kT)[1 - h(t - kT)]}
k=-oo

(82)

where K is the loop gain including the phase detector gain,

and the ratio F(s)/s is the loop filter expressed in the
tteaviside polynomial divided by the filtering effect of the

VCO (I/s). Noting that c = r - /- and assunaing that
r = 0 for convenience leads to

E(t) = H(s) (83)

where H(s) is the closed-loop transfer function of the sym-

bol synchronizer loop. Following the usual practice, it is
assumed that the one-sided loop noise bandwidth BL is

much smaller than the symbol rate, so that the variance

of the linearized tracking error in Eq. (83) can be deter-

nfined from the expression

2 2BL._'N (0) (84)
O-c __

['tq-_2Pterf(v_)] 2
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where ,_)N(0) is the spectral density of the noise process

N(t). To evaluate the spectral density, the autocorrelation

function of the noise is determined. Since the noise pro-

cess is cyclostationary, time is averaged over one period to
obtain a stationary process.

T

1/RN(r) -- _ Rg(t
0

+ r,t) dt

= E Nl(kT)h(t + r- kT)
k

+ N2(kT)[1 - h(t + r -- kT)]}

x _ {Nl(tT)h(t-tT)
t.= -- o0

+ N2(eT)[1 - h(t - gT)]} }dt
(85)

assuming for convenience that E[NI(kT)N2(tT)] "_ 0 for
all k and _ (even though there is a small correlation be-
tween them). Letting g = k + m obtains

10]{ RN(r) = F R_I (roT)
m

}× _ h(t + _ - _T)h(t - (k + re)T) dt
k:-oo

+F
rn k=-oo

x [1 - h(t- (k + m)T)]}dt (86)

Additionally, RN,(mT) = 0 for all m # 0 since NI(kT)
and Nl((k + 1)T) are based on integrations over disjoint

time intervals. Furthermore, RN_(mT) _- 0 for all m # 0

since N2(kT) and N2((k + 1)T) only have WB/2 << T sec

in common over the adjacent (full) symbol times. Using
these two conditions obtains

T

RN(r) = o._% h(t + r)h(t)dt + (rN2

0

T

x /Cl-h(t
0

+ 1)][1 - h(t)] dt (87)

Completing the averaging,

O.2 O.2

R_(t) = :_-!R(r)+ :_-_-R0-) (88)

where

T

R(r) = / h(t + r)h(t) dt
0

(89)

and is illustrated in Fig. 9. Therefore, the spectral density
of the noise process is given by

O"2 dr _V_

•_N(Y) = :_IS(f)I_ + --_--IS(f)l 2 (90)

where

s(/)=
T

/ e-iwr dT

o

= Te_i_T/4 sin(TrfT/2)
(rfT/2)

(91)

so that

is(f)l _ T2 sin2(rrfT/2)
- 4 (rrfT/2) 2 (92)

From Eqs. (88) and (90), ,CfN(0) is given by

'_m(0) = (_r_vl + °'_v_) T4 (93)

Thus, to evaluate the tracking-error variance it is necessary

to evaluate o'_% and a_%. First, _r_ is determined. From
Eq. (79),
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N1 -- x/ffb_T(N2 + N3)

-b (No0 + N1 -_ N2 - Na - N4 - Nb)(N_ + N3)

(94)

Since the two terms are uncorrelated and have zero

mean values, the variance of N1 is given by the sum of

the variances in Eq. (94). If the first grouping of Eq. (94)
is denoted as NA and the second grouping as NB, then

E[N_] and E[N_] can be evaluated. Consider the former:

Now consider the latter term with

: + + +

After simplifying, one obtains

E[N_] : N2°WMT (97)4

NoWM NgWMT (98)_2N1 = PT_ _- + 4

and

Now consider the computation of g_. From Eq. (80),

N2:/3V"-PT[ a2k+2+ a2k+_] (Nb+N6) (99)

To evaluate N2, the small correlations between N5 and

ci2k+l and N6 and &2k+_ are neglected so that

_r_v_
=/32PT2E [N_

(100)

or

O'2N_= -_ WBfl2 PT 2 (101)

since the transition detector term has an average value of
1/2. So,

2
dr e

_= (fraction of a symbol) 2

(102)

Notice that when/3 = 0, this result is the same as Eq. (55),
as it should be[ Since 13 is a parameter, it can be var-

ied to minimize Eq. (102). Figure 3 illustrates the results
for this symbol syne loop plotted versus R in decibels.

For this loop, /3v/-fiT must be known a priori to obtain

optimum performance. However, the parameter /3 is not

very sensitive. For example, at R = -12 dB, /3opt = 1.75
yields a normalized tracking error of 7.52. sec2/sec 2, and

at the value /3 -- 1, the normalized tracking error be-

comes 7.73 sec2/sec 2. t[owever, at /3 = 0 (mid-transition
detector only), the normalized tracking error becomes

8.84, the same as the second symbol sync loop considered.
In fact, when/3 = 0, the two curves are identical as noted
above.

Therefore, since T would be known precisely a priori,

and since P would be known to within 10 to 20 percent,

it seems that setting/3 -- 1 would allow very close to op-

timum (/3opt) performance. Furthermore, flopt is equal to
appro_mately 1 at Es/No > 7 dB, so that under most rea-

sonable conditions of the Block V receiver setting/3 = 1 is
optimum.

V. Conclusion

All three symbol-synchronization tracking loops offer

fairly similar performance. The hybrid loop called opti-

mum Manchester is better (low tracking error) for R <

185



0 dB than the other two loops. However, for R > 0, the

NRZx2 loop and the hybrid optimum Manchester loop are

essentially equal in performance. For the hybrid optimum
Manchester loop to work, the power of the signal has to be

estimated to provide the weighting/3Vt-fiT in Fig. 6 with

/3 set equal to unity.

Although the hybrid Manchester loop is optimum, it

is not clear that the extra hardware requirement of this

loop is warranted. It is necessary to compare the actual
estimated tracking losses for each loop based on the re-

quirements to determine if the complexity of the hybrid

loJp is justified and if it is best at high data rates.
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Fig. 1. The NRZX 2 Manchester symbol synchronizer.
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This article discusses open-loop frequency-acquisition performance for sup-

pressed-carrier binary phase shift keyed signals in terms of the probability of de-

tecting the carrier frequency offset when the arms of the Costas loop detector have

one-pole filters. The approach, which does not require symbol timing, uses fast

Fourier transforms (FFTs) to detect the carrier frequency offset. The detection

probability, which depends on both the 3-dB arm filter bandwidth and the received

symbol signal-to-noise ratio, is derived and is shown to be independent of symbol

timing. It is shown that the performance of this technique is slightly better than

other open-loop acquisition techniques which use integrators in the arms and whose

detection performance varies with symbol timing.

I. Introduction

Acquiring and tracking binary phase shift keyed

(BPSK) signals in the absence of a residual carrier is one

of the many functional requirements that must be met

by the Block V receiver [1], the Deep Space Network's

(DSN's) next-generation receiver presently under develop-

ment. The question of how to reduce the frequency error

Af between the received and predicted carrier frequency

to within the pull-in range of the Block V receiver's digi-

tal Costas loop (the loop used to demodulate BPSK sig-

nals) was initially addressed in [2]. The open-loop acqui-

sition techniques discussed in [2] estimate Af by perform-

ing fast Fourier transforms (FFTs) on the phase detector

output of Costas-type loops. Because the techniques in

[2] use integrate-and-dump arm filters, their performance

in terms of probability of detecting Af depends strongly

on symbol timing errors, that is, the receiver's estimate

of where a symbol epoch starts and ends. In particular,

the performance of these techniques, which worsens with

increasing symbol timing errors, motivates evaluating sys-

tem performance when the integrate-and-dump arm filters

are replaced by one-pole arm filters that are independent

of symbol timing. This article considers only the estima-

tion of the initial frequency error and does not treat the

acquisition of the phase and frequency after the frequency

error has been removed and the loop is closed (see. Fig. 1).

Frequency and phase acquisition when the frequency er-

ror is less than one-half the closed-loop noise bandwidth

should occur within a few inverse closed-loop noise band-

widths [3,4].

Figure 1 is a functional block diagram of the open-loop

frequency-acquisition technique under consideration. The

arm filters are assumed to be one-pole filters. The error

signal zt(t) is sampled every T sec (T sec is the duration

of a symbol), accumulated, and fast-Fourier-transformed

to obtain the error signal spectrum. The prob;_bility of

detecting a tone in white Gaussian noise is well known [5]
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and can easily be computed as a function of the error-

signal SNR. The results of [5] can be applied in a straight-
forward manner because, as shown in Appendix A, the

error sequence z(n) out of the integrate-and-dump filter

is composed of a sinusoid at 2Af Hz plus noise which is

approximately white and approximately Ganssian. The
absolute frequency difference 12All can be estimated (it
is assumed in the analysis to follow that AfT << 1) after

detecting the error signal in the spectrum at the output of

the Costas loop phase detector. Only the absolute value of

2Af can be estimated because taking the product of the
I and Q arms doubles the frequency error and removes

its sign. The sign ambiguity problem can be resolved by
offsetting the frequency so that the error Af always has a

known sign.

This article only considers tile case of detecting and

subsequently estimating the frequency error when the er-

ror signal is restricted to a single FFT bin. It also assumes

that the error signal is always present. Consequently, the
article does not address the question of how to choose a

threshold, which is the power level that the FFT bin with
the maximum power must exceed before a signal can be

declared to be present.

When a tone is known to be present and restricted to

a single bin, the maximum likelihood (ML) estimate of
the tone is to observe the FFT magnitude spectrum and

to select the frequency bin with the maximum power [5].

Note that, in practice, it is unlikely that the error signal

will be restricted to a single FFT bin.

In a typical deep-space operation, the Doppler shift is

accompanied by a Doppler rate which is removed by ramp-

ing the local oscillator phase based on Doppler rate pre-
dicts. If the Doppler rate cannot be predicted precisely,

the error signal will drift in frequency during the FFT
observation time, causing it to smear over multiple bins.

Clearly, the extent of the smearing depends on the size of

the Doppler rate error. On the other hand, if the Doppler

rate is known very accurately so that the signal does not

drift appreciably during the observation interval, the signal

may be present in multiple bins due to not sampling the
discrete-time Fourier transform at its peak (see Chapter 8

of [6]). Restricting the error signal to a single bin greatly

simplifies the analysis. Furthermore, it is appropriate be-
cause the intent is not to quantify absolute performance

but rather to compare performance between the lowpass

technique and the integration techniques of [2].

Although other models are not precluded, sampling of

z'(t) is modeled as a T-sec integrate-and-dump filter, be-

cause doing so defines the signal-to-noise ratio (SNR) of

the error sequence z(n) in the same bandwidth as the al-

ternative acquisition techniques studied in [2]. Defining
SNRs in the same bandwidth is important when compar-

ing performance between different schemes. Since the arm

filters do not require symbol timing; and taking the prod-
uct of the I and Q arms prior to the integrate-and-dump

filter gives rise to a signal component (a tone at 2A f)

whose amplitude does not depend on symbol timing, the

performance of the one-pole technique is independent of

symbol timing errors. For convenience, the integrator ill

Fig. 1 is shown as synchronous with symbol transitions al-
though the analysis does not depend on this fact. In fact,

the value of integration time T _ does not have to be equal

to T as long as AfT _ << 1. However, as shown in Sec-

tion II, performance depends directly on the normalized
bandwidth R, defined as the ratio of the 3-dB arm filter

bandwidth to the data rate and the symbol SNR.

A mathematical model of the one-pole technique is de-

veloped in Section II. Its performance in terms of prob-

ability of detecting the frequency difference between the
received and predicted carrier frequency is derived in Sec-
tion III and discussed in Section IV. Conclusions are stated

in Section V.

II. Mathematical Model

The received sUppressed-carrier BPSK signal, downcon-

verted to an appropriate intermediate frequency (IF), can
be modeled as

r(t) = x/-_d(t)sin(a_it + Oi) + n(t) (1)

where P is the received power in watts, wi is the IF radian

frequency expressed in tad/see, Oi is the signal phase in

tad, and d(t) is the transmitted data stream given by

+oe

d(t) = E dkp(t - kr) (2)
k= - c'_

where p(t) is the baseband non-return-to-zero (NRZ) pulse
limited to T see and d_ represents the equally likely

+1 binary symbols. The narrow-band noise process n(t)

can be expressed as

n(t) = v/2nc(t)cos(wit + Oi) -- v/'2n,(t) sin(wi t -1-Oi)

(3)

where n_ (t) and n, (t) are statistically independent station-

ary band-limited white Gaussian noise processes with one-

sided spectral density No watts/Hz and one-sided band-

width W Hz. The signal r(t) is demodulated by in-
phase and quadrature references, v"2sin(wot + 0o) and
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V_cos(wot + 00), tuned to the predicted carrier frequency

and then filtered by a lowpass filter. Neglecting higher

frequency terms, the demodulated signals i(t) and q(t) in

Fig. 1 can be represented as (see Chapter 5 of [7] for an

example):

i(t) = Re [v_d(t)d%Ja_t] - Re [nc(t)_e3%Ja_*]

- Re[n,(t)e_*e__']

and

q(t) = Re [V/-fid(t)_eJ% jA_t]

(4)

- Re [n,(t)_eJCd A'_'] (5)

where Re is the real part of a complex number, Aw =

2rAf (Af _ fi -- fo) is the radian frequency error to

be estimated, and ¢ _ 0i -0o is the phase error. Let

D(w), Ns(w), and No(w) be the Fourier transforms of the

baseband signals d(t), n,(t), and no(t). Then the Fourier

representations of i(t) and q(t) are given by

I(w) = T

(6)

1

2j k J

and

Q(w)= g [D(w- Aw)e jee - D'(-w- Aw)e -j4_]

1 [N_(w- A_)e" + N:(-_- a_)_-3_]+7

1

2j

(r)

where X* is the conjugate of the complex number X. Let

H(w) be the transfer function of the arm filters in Fig. 1.

Then, the filter outputs in the inphase and quadrature
arms are given as

Zi(w) = _f_ [D(w- Aw)e j¢ + D*(-w - Aw)e -j_]

~ ,

2j [N°(_- A_)e- - Nc (-_- _),--]

1 F

2 t *

(s)

and

&(_) = ,/7 [z)(_- a_)._* z)'(-_ - _)c-]
-_- _ J

1 [/V¢(w - Aw)e jt +fi[¢" (-w - Aw)e -jo]+7

1

2j

(9)

where/)(w), 2V_(w), and N,(w) are defined, as in [7], as

D(w) = D(w)H(w + Aw) (10)

IVc(w) = N_(w)H(w) (11)

]V,(w) = N,(w)H(w) (12)

Equations (8) and (9) represent the output of the arm

filters when the signal portion of the input has band-
pass spectra centered at Aw, and the input noise is band-

limited white noise with bandwidth W >> B + Af where

B Hz is the 3-dB bandwidth of H(w). Equations (8) and

(9) are applicable since the demodulated signals i(t) and
q(t) have signal spectra centered at Aw during acquisition.

The time-domain representations of Zi(w) and Zq(a') are
given by

zi(t) = Re [x/-Pd(t)eJ¢e j_'] + ai(t) (13)

and

Zq(t) = Re [v/-fid(t)_eJCeJaWt] + _q(t) (14)
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where

r

l eJCej ,".a,t]_,(t) = -Re [_(_)7

_(t) = Re [,_(t)d_d _']

- Re [n-,(t)_e_%_'] (16)

and where d(t), ffs(t),and fie(t) are the inverse Fourier

transforms of D(a_), Ns(t), and /Vc(t). It can be shown
from Eq. (10) that when Aw _ 0, d(t) is in general com-

plex; when Aw = 0, it is real.

III. One-Pole Arm Filters

Assuming that the arm filters in Fig. 1 are one-pole

filters with 3-dB bandwidth B Hz, the transfer function
H(w) is given by

H(w) = wB (17)
j_ + _B

where taB = 27rB is the 3-dB filter bandwidth in radians.

For such a filter, the error signal z'(t) = zi(t)zq(t) can be

computed as (see Appendix A):

z'(t) = A(P, AwT, R) sin(2Acot + 2¢ + ¢) + nl,]! (t)

(18)

The amplitude A given by Eq. (A-5) is a function of many

variables, including the normalized bandwidth R = BT,

which is the ratio of the 3-dB bandwidth of the one-pole

filter to the data rate R_ = 1/T. It can be shown that A

does not change significantly with AfT when AfT << 1.
Since this article only considers the case AfT << 1, the

dependence of A on AwT is omitted in subsequent expres-
sions to allow a simpler notation. Since the interest here is

the magnitude of the error signal, the phase _ in Eq. (18)
is not relevant and consequently is not included here. The

effective noise n'eH(t ) into the integrator is defined as

n',sl(t) a , ,n;,(t) + n,.(t) + nnn(t ) (19)

where the self-noise due to the signal times the signal prod-

uct, n_,,(t), is given by Eq. (A-7); the noise due to the sig-

nal times the noise product, n_,,(t), is given by Eq. (A-8);

and the noise due to the noise times the noise product,

n_,(t), is given by Eq. (A-9). The signal-signal noise,

n',, (t), which is a consequence of intersymbol interference

(ISI), has two terms. The first term has a continuous spec-

trum and zero mean, whereas the second term gives rise to

line spectra at harmonics (not including the fundamental
harmonic) of the symbol rate. The noise n',,_(t) is the low-

pass filtered signal response at time t (due to the present.

as well as previously transmitted pulses) times the thermal

noise filtered by a lowpass filter. Lastly, the noise-noise

process n_,_(t) is the product of the filtered thermal noise
in the inphase arm and the quadrature-phase arm.

These noises are independent of each other since data

and noise are assumed to be independent. Consequently,

the average power of the effective noise is the sum of the

average power of each of the noise processes above. Ex-

pressions for average noise power are given by evaluat-

ing the autocorrelation functions of Eqs. (A-11) through

(A-13) at r = 0.

Referring to Fig. 1, the process z_(t) is integrated and

dumped to obtain the sequence z(n). Assuming that the
frequency error is much smaller than the data rate, that

is, AfT << 1, it is shown in Eq. (A-15) that the error

sequence z(n) can be represented as

z(n) = A(P, R)sin [2Aw(nT + T/2) + 2¢ + _] + n_]1(n )

(20)

where A(P, R) is as defined in Eq. (A-5) and the effective

noise sequence n_ll(n ) is defined to be

n_fl(n) _ n,,(n) + n,,_(n) + n,,,(n) (21)

where the noises n,,(n), n,,,(n), and n,,(n) are given by
Eqs. (A-16) through (A-18). The discrete autocorrelatiou

functions of these noises, assuming Ac_ = 0, are derived

in Appendix C and listed in Eqs. (A-19) through (A-21).
These functions are exact except for the autocorrelation

of ms(n), which neglects the negligible second term in

Eq. (A-7). Since data and noise are independent, the ef-

fective noise power is given as _2 where
eff'

2 2 2 2
fie.f] : crss -t- O'sn + finn (22)

and where Eqs. (A-19) through (A-21) for R,,(rn),
R,n(m), and Ran(m) yield

p2 ( e-2,R + e2rR)
2 _ -1+

_r,, 8r2R 2 2 1 -_-4_R

(23)
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0.,.= 5-

e-_R ( 1 17)+ _ 1 + 27rR 87rh-R2

16r2R2 e -4_n + (24)

C_nn = -- (1--e -4_R) (25)

where 0.2 = No/2T. The signal-to-noise ratio of the error

sequence z(n), defined as signal power divided by the noise

power, is given by

SNRz(R) = A2(P' R)2 (26)
2_eff

where, after one uses Eq. (A-5) for A(P,R) and

Eq. (22) for 0.elf, the term SNRz can be written in terms
of the received symbol SNR as

SNRz(R) =
IC0(R)l

SC.(a) + n) + n)

(27)

where SNR g PT/No, ]C0(R)] 2 is given by Eq. (A-6),

and where C,z(R) = 2 2a,,/P , C,n(R) = 0._n/Pa 2, and

C,m(R) = o'S,J0. 4. The quantities C,,(R), C,n(R), and

Cnn(R) depend on R because a_,, u and 20.anJ finn are func-
tions of R.

As expected, for a given SNR, SNR, is primarily a

function of R. Equation (27) is exact except for Cs,(R),
which is approximate because 0._, is an approximation:

see derivation of Eq. (A-19). Although it is not proven,

2 given by Eq. (23) is believed to be a slight upperthe 0._s

bound to the self-noise power for NRZ pulses. At symbol

SNRs below 0 dB, SNRz is a very accurate expression
for the true error sequence SNR. This is because in this

region the sum of C,,(R) and Cnn(R), which are scaled by

the inverse of SNR and are exact, dominates Cs,(R). For

SNRs above 0 dB, SNR_ is believed to be a slight lower
bound to the true error sequence SNR, because in this case

C,(R) dominates the other two terms in the denominator

of Eq. (27).

The objective of the analysis presented here is to enable
the designer to choose an arm filter bandwidth R for this

scheme that optimizes the probability of detecting a tone

in white Gaussian noise, that is, detecting the frequency

error between the incoming signal and the local oscillator

frequency so that the reference frequency can be moved
to the input frequency. Then the loop can be closed to

speed acquisition. This is accomplished by choosing an R
that optimizes the SNR of a tone in white Gaussian noise.

The error sequence SNR given by Eq. (27) represents the

SNR of a tone imbedded in noise nell(n), which is neither
exactly white nor exactly Gaussian but can be assumed to

be both in practice. This is because the random variable

in each FFT bin, which results from summing N appropri-

ately weighted random variables at the FFT input, tends

toward a Gaussian random variable for large values of N.

The correlation coefficient p for a one-symbol separation
is less than 0.2 for symbol SNRs below 0 dB and R > 0.3.

When p < 0.2, the assumption of independent samples

out of the integrate-and-dump is valid. Also, it is true

that nell(n) is essentially white when R > 0.5 for SNRs
above 0 dB. Thus, for any optimum R it is essentially true
that the integrate-and-dump output sequence is white and

so the results of [5] apply for the probability of correct de-

tection of the frequency error.

IV. Numerical Results and Discussion

A. SNR Degradation

Figure 2 depicts SNR degradation D versus normalized

bandwidth R. Degradation is defined as the reduced error

signal SNR given by Eq. (26) relative to the SNR of the

error signal of an "ideal" Costas loop. An ideal Costas

loop has integrate-and-dump arm filters with (magically)
perfect symbol timing instead of lowpass filters. In [2] it is

shown that the error signal SNR for an ideal Costas loop
detector SNRi is given by

SNR

SNR_ - 4 + 2/SNR (28)

where SNR _ PT/No is the received symbol signal-to-

noise ratio. In mathematical terms, the degradation is
given as

SN R_

D(R)- SNRz(R) (29)

Note that degradation defined in this way is a number

greater than one, which indicates an actual loss. Fig-

ures 2(a) through 2(e) show degradation D(R) versus a
relative 3-dB bandwidth R for various values of SNR. As
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expected, there is an optimum value for R (i.e., arm filter

bandwidth) that minimizes degradation and thus maxi-

mizes error signal SNR. Values of R greater or less than
this optimum value decrease error signal SNR because they

increase the noise power faster than the error signal power.

From Fig. 2 it is clear that lower symbol SNRs result in

smaller optimum R values.

The reference SNR, SNRi given by Eq. (28), is plot-

ted versus symbol SNR in Fig. 3. Figures 3 and 2 relate

received symbol SNR to the error signal SNR, SNRz.

B. Probability of Detection

The outlier probability (missed detection probability) q,

defined as the probability that the magnitude of any FFT

noise-only bin exceeds the magnitude of the signal-plus-

noise bin, is given by q = 1 - p, where p, the probability

of detecting the correct frequency offset, is given by (M =
U/2):

oo
p = 2M(SNRz)ye-M(SNR,)(u_+U

x Io[2My(SNRz)] [1- y2e-M(SN1L)]mdy

(30)

where N is the FFT size (and M is one-half the FFT
size) and I0() is the modified Bessel function of the first

kind. Thus, this probability for p is given by [5] except

that the factor of M - 1 is replaced by M in the last

bracketed term. If M were M - l, the expressions in [5]

and Eq. (30) would be identical. The results in [5] are

slightly different from Eq. (30) because the results in [5] are
derived for the more general complex FFT case. Figure 4

depicts q versus SNR where SNR corresponds to tile signal-

to-noise ratio at the FFT input (i.e., SNRz). Figure 4
applies only when the noise prior to the FFT operation is

white and Gaussian. In the case described here, the error

signal noise component nell(n) is essentially white and

Gaussian. Since the N-point FFT has input samples at
the symbol rate, the frequency bin size is

1

AfBIN- NT (31)

with (l/T) as the integrate-and-dump rate which is as-
sumed to be the symbol rate in this analysis in order to

compare the results with [2]. Thus, when the correct fre-

quency bin is detected, the actual frequency error, assum-
ing that the error signal is at the center of a bin, is reduced

to a maximum of AfBIN/2. As long as the maximum fre-

quency error is less than one-half of the loop bandwidth

(that is, N is large enough), and

AfB___.____N< B___£ (32)
2 - 2

or equivalently

A fBIN <__ B L (33)

where BL is the one-sided (closed-loop) bandwidth of the
Costas loop, the frequency and phase pull-in should be on
the order of a few inverse BL'S.

The following example illustrates how to use tile curves

presented in this section to compute the probability of cor-

rectly detecting the frequency error "seen" by the loop.
Suppose that the received symbol SNR is 0 dB. Then,

from Fig. 3, the error signal SNR of an ideal Costas
loop is -11 dB. Assuming that R = 0.3, from Fig. 2(c),

D(0.3) = 0.3 dB and the error signal SNR ,gNR_ =

-11.3 dB. Finally, from Fig. 4, the probability of incor-

rectly detecting the actual frequency error for a 1024-point
FFT is 1.3 x 10 -6.

V. Conclusion

This article has described a method of determining tile

probability of correctly identifying the frequency error be-

tween the incoming suppressed-carrier signal and the fi'e-

quency of the Costa.s loop oscillator in order to aid in the

frequency acquisition of the suppressed-carrier signal. 'file
detector chosen for estimating the frequency error is tile

error detector of the Costas loop, which is used for track-

ing the suppressed-carrier signal. The error signal is not

fed back to the loop filter and numerically controlled os-
cillator (NCO), but rather sent to an N-point FFT. Tim

FFT then estimates the frequency error, the Costas loop

is closed, and the loop NCO is adjusted ira frequency to

reduce the initial frequency error to a very small value.

Knowing the symbol SNR allows the determination of

the SNRi and, from Figs. 2(a) through 2(e), the additional

degradation D. The addition of these two tel'ms yields

SNR_, which is the abscissa entry on the plot of the prob-

ability of incorrectly detecting the actual frequency error
(Fig. 4). One minus this probability yiehls the probahility

of correctly detecting the initial frequency error between

the received signal and the rest frequency of the Costas

loop NCO.
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This scheme compares favorably to the three methods

suggested in [2]. In particular, at SNRs that are < 0 dB,

the staggered approach of [2] is best (minimum degrada-

tion). Comparing the average loss (averaged over timing

error) at SNRs < 0 dB, the one-pole arm filter approach
is about 0.5 dB better. At SNRs > 0 dB it is better by

more than 0.5 dB.

Whether the one-pole filter approach or one of the
methods suggested in [2] will be used for the Block V re-

ceiver depends on hardware considerations, since the per-

formance of the best integrate-and-dump arm filter tech-

nique is nearly comparable to the one-pole arm filter ap-

proach and is easily switched to the optimum tracking con-

figuration with integrate-and-dump arm filters.
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Appendix A

Derivation of the Error Sequence z(n)

Figure 1 shows how lowpass filtered signals are collapsed into an error signal that can be Fourier transformed to
estimate the frequency error Af. The received signal v(t) downconverted to an appropriate IF is given by Eqs. (1)-(3).

The signal r(t) is first demodulated and then lowpass filtered to produce the functions zi(t) and zq(t), which are given

by Eqs. (13) and (14). Referring to Fig. 1, the error signal z'(t) is given by

= z (t)zq(t)

(A-l)

where Re and Im are, respectively, the real and imaginary parts of a complex number, and where fii(t) and hq(t) are

given by Eqs. (15) and (16). The quantity d2(t) is given as

It can be shown from Eq. (10) that d-_(t), which is generally a complex quantity, reduces to a real quantity when

Aav = 0. In this case, Eq. (A-l) reduces to (pd2(t)/2)sin 2¢ plus noise. This is the well-known form for the error sigual

of a Costas loop [8], where the quantity a_(t) is the filtered version of the baseband data d(t). When A_o ¢ 0, the function

_l'-'(t) for a one-pole filter is derived in Appendix B to be

d_-(t) = k Cn(R)eJ(_'_'lr) + _ k dkdt_(t- IT)_(t- kT) (A-3)

ig:k

where/_(t) and C,,(R) are respectively given by Eqs. (B-8) and (B-9). Using Eq. (A-a) for d2(t) and Eq. (B-4) for a_(t)

in Eq. (A-i), the error signal can be written as

z'(t) = A(P, R) sin(2A_at + 2¢ + {) + n'_]l (t) (A-4)

where

A(P,R) =  lCo( )l (A-5)

and where, from Eq. (B-10), the squared magnitude of Co(R) can be computed to be

2

1 + ( A_T52 1 -Jr- (&wT]22_R i 1 + _ 2-7-_J

q- e -4_rR -- 2e -2r/t cos(AwT))

2
1 - .cos( X T) -2rrR

(A-6)

202



Since the interest here is in tile spectrum of the error signal, tile phase _ in Eq. (A-4) is not relevant. Consequently, it
is not included here.

The effective noise n'eIl(t ) in Eq. (A-4) is defined in Eq. (19), where

,,'.(t) = Im "_ E dkdt_(t - kT)_(t - lT)e j'_(a_'+¢) +Ira ]-_ C,(R)eJ(2n_tlT)eJ2(±_'_+¢)

n#O

(A-7)

n's,_(t ) = Re v"fi dk_(t - kT)e j(a_'+¢) ffq(t) + Re x/"fi dk[_(t - kT)le j(_'_'+¢) hi(t)

k=-_o L k=-c_ J
(A-S)

,_'.(t) = ,_(t)G(t) (_ug)

where the binary symbols dk are +1 at random with probability one-half,/)(t) and Cn(R) are given by Eqs. (B-8) and
(B-9), and ffi(t) and q(t) are given by Eqs. (15) and (16). These noises are independent of one another since data
and noise are assumed to be independent. Consequently, the autocorrelation of the effective noise is the sum of the

autocorrelation of each of the noises. Mathematically,

<js(_) = R'.(_) + G,,(_) + R'.(_) (A-10)

where, from Appendix C,

R;,(v) _ _ -1 + 2 1 Ze--:-a-'R 5(r) (h-ll)

e-2"_l_l (2 e -2"R)
R',. (_) =

P e -2_BI'I ro e-2,rR e2,R) @ZzrBe-2,BM- 7 ---'ffgtr- _" - -

[rl _<T

Irl _ T

(A-12)

R'.(r) = _B e -4"BI'I (A-13)

The preceding equations describe the second-order statistics of the noise, which is usually fed back to close the loop
along with the signal component. Consequently, the equations can be used to compute the tracking variance of a Costas

loop with one-pole arm filters. The tracking variance was computed (in the absence of self-noise) by using the noise

statistics above. It was found to be the same as that computed in Chapter 5 of [7]. Although this is not a definitive test
of the accuracy of the equations above, it certainly enhances confidence in them.

As shown in Fig. 1, the error signal z'(t) is integrated and dumped every T sec t.o obtain the error sequence z(n).
That is,

1 [(n+_)r z'(t)dt (A- 1,t)zOO = _ _r
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Assuming that the frequency error to be estimated, A f, is small relative to the data rate, R_ = 1/T, allows one to write

=(,) as

z(n) = A(P, R) sin[2Aw(nT + T/2) + 2¢ + f] + n¢H(n ) (A-15)

where the sinusoids in Eq. (A-4), which are approximately constant over T sec by assumption, can be removed outside the

integral after evaluating them at the midpoint of the integration window. The amplitude A(P, R) is given by Eq. (A-5),

the phase _ is not computed because it is not relevant, and the effective noise nell(n) is given by Eq. (21), where

1 [(,,+_)r _'.(t)dtn.(n) = y J.T
(A-16)

1 [(_+I)T n',n(t)dt.,.(n) = _ .nr
(A-17)

1 f(,,+I)T n_,_(t)dt
n..(n) = y J.r

(A-18)

where ni,(t), n_,_(t), and n_,_(t) are given by Eqs. (A-7) through (A-9). The discrete autocorrelation functions of the

noises above, which are computed in Appendix C, are

p2 ( e_2n R -_- e27r R 2 e_4_rR

R,,(m) = _ -1 + 2 ) 1 - e-4_n'
0m

O, mOO

(A-19)

/ p,_2[] , _-_.R _ .-_.R .-_.R 1 ]

[ _ 77_g (} _ 8__n ) + (¼ + 4_.(._;_ _ _) - 4-.07.-g_+ 8--07.-g_] , m=0

R,,_ (m) pa2 1 (1 9 e-2'_R 5---- -- 8-'U_) + (1 + + 4_-7_)- 8_¥_K(1+8_7_K)1 1 (e-O.R -- 2e -s'R + e -l°'n) m = -t-1-""T'-- _

pa2 k,f_'-e-2"n+e2_'n)64"_R_ (2e-4"/_lml _ e-4_R(Iml+D -- e-4"n(Iml- 1)) m # 0,-t-1

(A-20)

_
_(1 , m=O

R..(m) =
a 4

$g (e-4_n(Im1-1) + e-4_n(l_l +1) - 2e -4_nlrnl) , m ¢ 0

(A-21)

where a 2 = No/2T and R = BT is the ratio of the arm filter 3-dB bandwidth B to the data rate, lIT. Note that,

as R ---* co, R_(m) ---* 0 as expected. In this case, the data pulses approach the unfiltered case and consequently, the
self-noise power approaches zero. In the limit R ---* co, Rsn(m) "* Pa 2, which is the signal-noise power at the output of

the integrate-and-dump filter when the input is white noise with spectral level PNo/2 watts2/Hz. Finally, R,m(m) ---*co

as R ---* co, since in this case the input is white noise with spectral level N_TrB/2, which becomes unbounded as R ---* co,

R = BT, for fixed T.
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Appendix B

Computing d2(t)in Eq. (A-l)

The data sequence d(t), which is given mathematically by Eq. (2), has its Fourier transform given by

oo

D(w) = E dkP(w)e-Jk_T (B-l)
k=-oo

where the binary symbols dk are 4-1 with equal probability and P(w) is the Fourier transform, denoted 5r{}, of the

baseband NRZ pulse p(t). Applying Eq. (B-l) to Eq. (10) one obtains

where/5(w) is defined to be

As a result, d(t) = ._-l{/)(w)} is given as

O(w) = _ dkP(w)e -jkwT (B-2)
k=-¢o

[_(w) = P(w)H(w + Aw)

d(t)= _ dk_(t-kT)

(B-3)

(B-4)
k_- --OO

where p(t) is the inverse Fourier transform of/5(w). From Eq. (B-4), the term d2(t) in Eq. (A-l) can be written as

a_-'(t)= k P2(t - kT) + _ k dkd,_(t - lT)fi(t - kT) (B-5)
k :.= -- OO k=--oo I ----.-- _,o

The first term in Eq. (B-5) is a periodic complex function with period T. Consequently, it can be represented by a
Fourier series:

k=-oo n------O0

where the Fourier coefficients Cn are given by

C. = l _'{f_(t)}_=,,(2./T) (B-7)

For a one-pole filter, iS(l) can be computed to be

T)) (B-S)fi(t) - wB +jAw

where wB is the 3-dB filter bandwidth in radians, p(t) = u(t) - u(t - T), and u(t) is the unit step function. Applying
Eq. (B-8) to Eq. (B-7), the Fourier coefficients Cn as a function of AwT and R = BT are computed to be
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I_ ((-1)1 . sin n_r- AwTC.(R) = 1+ J _.--Tr

• AwT 1 e -(2"R+jAwT))1 (1 + 3_-7-_..___.__)(__.Z

2rR (1 +j_) (l+j_) ) (B-9)

Note that for the special cases of Aw : 0 and Aw = (-n_r)/T, Eq. (B-9) reduces to Table 2 of [9]. Additionally, for

n = 0, Eq. (B-9) reduces to

( 1 /2( 1 1--e-(2"R+JA_°T)'_. :a_T 1 - i ,-'-7"-TN_T /Co(R) = 1_r j 2_77_/ 27rR +.7 2.gT.-f[ /
(n-lo)
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Computing

Appendix C

R'ss (z), R'sn ('c), R'nn (d and Rss (m), Rsn (m), Rnn (m)

When applicable, the derivations that follow assume that the frequency error Af = 0. This greatly simplifies the

computation of the various autocorrelation functions and is not expected to change appreciably the final result of the
main text. The reason for this is that all the significant noise components give rise to continuous spectra whose shapes

are not expected to change much with Af when Af << 1/T. Furthermore, when computing R'ss(v), the second term in

Eq. (A-7) is not included. This approximation is made because, except for the first harmonic which has a line component
at lIT :1: 2A f, the remaining harmonics give rise to line components far beyond the band of frequencies within which

the error signal is expected. Additionally, power in the first harmonic which is at least 8 dB down from the component

at 2Af when A_T _< 0.1, is suppressed even further by the integrate-and-dump filter response preceding the FFT

operation.

I. R'ss (z) and Rss (m)

The self-noisen'ss(t) is given by Eq. (A-7). When Aw= 0,/5(t) is real, and n',,(/) reduces to

.'.(t) = 7 sin 2¢ (C- 1)

where d, is +1 at random with probability one-half, and 0, which is independent of d,, is a uniform random variable in

the interval [0, 27r]. The filtered pulse/5(t) is given by Eq. (B-8). The autocorrelation fnnction of n',,(t) is given by

p2

n'.(_) = E[,_'.(t),_'.(t+ _)1= -g-R(_) (c-2)

where, after noting that g[sin 2 ¢] = ½, R(r) can be defined as follows:

R(r) = E E dkd_dmd,_#(t - kT)_(t - 1T)_(t - mT)_(t - nT) (C-3)
=-k=--C_ 1=-(_ m=--c_ n oo

t#k n#m

The function above, which is in general difficult to compute because the filtered pulse/5(t) is not time limited, can be

approximated as follows. One begins by expressing R(r) as the inverse Fourier transform of its corresponding spectral

density.

)2 5 f_°R(_) = s(_)d_ , d_ _ S(o d_ , d_
oo 2_r ,_ 27r

(C-4)

From Chapter 5 of [6], the dc component of the spectral density in Eq. (C-4) is given by

S(O) = 4T E R2d(IT) (C-5)
l=l

where

FRd(IT) = Sd@)lH(_)12e -_tTd"_ (C-6)
27r
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where Sa(w) is the spectral density of the random NRZ data and ]H(w)] 2 is the squared magnitude of tile one-pole
filter with 3-dB bandwidth B IIz. Grouping the exponential in the above integral with 1H(aJ)] 2 and applying Parseval's

theorem gives the corresponding integral in the transformed domain. Namely,

where the parameter R = BT. Finally, R',s(r ) in Eq. (A-11) follows after back-substituting the last result.

The discrete autocorrelation function given by Eq. (A-19), which is tile correlation function of the noise sequence

n_,(n) given by Eq. (A-16), follows directly upon evaluating the next equation:

lJoTf(_+I_T R'.(lt2 - t, Ddt2dt,r_,,(m) = _-5 J.,r (c-8)

where R_,(r)is given by Eq. (A-11).

II. R'sn (_) and Rsn (m)

The signal-noise process n_,,_(t) is given by Eq. (A-8). For Aw = 0, i6(t) is real and n's,,(t ) reduces to

)n',,_(t)= _ dk_(t-kT) cos¢ fiq(t)+ dk_(t-kT)sin¢ fii(t) (C-O)
\ k=-oo

Since the data and noise processes are independent of each other, the autocorrelation of the signal-noise product is the

product of the autocorrelation of the individual signal and noise processes. Ilence,

R',n(r ) = g[n',,_(t)n',,_(t + r)] = PR,(r)I_(r) (C-IO)

where

Lk=- c_ t=-oo

(c-11)

r_(_-) = s[_(t)_i(t + _-)]= s[_q(t)_q(t + _-)] (C-12)

The functions R,(r) and P_(r) are the autocorrelation functions of signal and noise processes at the output of a one-
pole filter when the input signal process is random NRZ data, and the input noise process is white noise. Consequently,

writing R,(r) as the inverse Fourier transform of its corresponding spectral density in terms of the input spectral density

times the squared magnitude of the one-pole filter, grouping the exponential with the squared magnitude of the filter

transfer function, and applying Parseval's theorem yields

R,(r)= /; (1- [ff_--_) "_-e -2"BIr'+_ldr'
(C-13)

where B Itz is the 3-dB bandwidth of the one-pole filter. The noise correlation is well known to be

R,(r) = _rrBe -2_Blrl (C-14)
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Finally, the signal-noise correlation given by Eq. (A-12) follows aKer substituting Eqs. (C-13) and (C-14) into Eq. (C-10).

The discrete autocorrelation function given by Eq. (A-20), which is the correlation function of tile noise sequence

ns,_(n), is obtained upon evaluating the next equation:

I foT[(m+1)T R'sr_(Jt2 --tl J)dt2dtx
R,.(m) = _ Jmr

(c-15)

Since the integrand above depends only on the absolute difference It2 -It I, the double integral above call be reduced to

the following simpler single integrals when m = 0, 1,-1. Namely,

[T [(m+I)T { ff T R'_'(Iri)(T- trl)dr'
R',,_(lt2 - t_l)dt2dtl = (C-16)

JO dmT fi2T t_',n(Irl)7-dr,

m=O

m = 1, - 1

When Iml > 1, Eq. (C-15) reduces to the product of two single integrals in a straightforward manner.

II1. R'nn ('r) and Rnn (m)

The noise process n_nn(t) given by Eq. (A-9) is the product of the filtered inphase and quadraphase noise processes,

hi(t) and fiq(t). The autocorrelation of these noises, denoted by R,_(r), is given by Eq. (C-14). Furthermore, since

hi(t) and hq(t) are independent with respect to each other, R,,,_(r) = R2(r) and Eq. (A-13) follows. Tile discrete
autocorrelation Rnn(m) is given upon evaluating the following equation:

IT [(m+l)Tl_,_(m) = tll)dt2dtlR'n.(lt_ -
dO JmT

(C-17)

where, when m = O, the double integral above can be transformed to tile following simpler single integral:

/0T/0 SR'_ (It2 - t,l)dt2dt_ = f_ ([7-1) (T -17-])d7- (C-18)
T

When m _ 0, Eq. (C-17) reduces to the product of two single integrals.
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Frame Synchronization for the Galileo Code
S. Arnold and L. Swanson

Communications Systems Research Section

This article reports results on the performance of the Deep Space Network's

frame synchronizer for the (15,1//4) convolutional code after Viterbi decoding.

I. Introduction

Most deep-space mission communication systems use

a 32-bit unique word (synchronization or sync word) to

identify the beginning of a telemetry frame. The sync
word is incorporated into the spacecraft's telemetry data
stream after it has been divided into frames. The data

stream is then encoded, transmitted, and received at a
Deep Space Network (DSN) tracking station. The ability

of the tracking station to achieve frame synchronization re-

quires the appearance of the sync word within the decoded

bit stream. Difficulty arises when the sync word has been
corrupted by bit errors, which the Viterbi decoder tends

to create in bursts. As a result, the DSN has incorporated

frame synchronizers into its communication systems based

on an algorithm that attempts to find the sync word even
if it is corrupted.

The performance of the DSN frame synchronization al-

gorithm has been analyzed for various frame lengths at

various signal-to-noise ratios (SNRs) and thresholds using
the NASA (7,1/2) convolutional code [1]. The (15,1/4)

experimental convolutional code developed for the Galileo
mission to Jupiter will use the same frame synchronizers.

Although the present DSN frame synchronization scheme

is adequate for the (7,1/2) code, its performance for tile
(15,1/4) code is unknown. Given the size of the Galileo

code, the average error bursts generated from the output of

the (15,1/4) Viterbi decoder are twice as long as the bursts

from the (7,1/2) Viterbi decoder. See [2,3] for further dis-
cussion of the burst statistics for the NASA code and the

Galileo code. This article determines the performance of

the frame synchronizer for tlle (15,1/4) convolutional code

after Viterbi decoding and finds the threshold that opti-

mizes the probability of acquiring true sync within four
frames using a strategy that requires next-frame verifica-
tion.

II. Method for Finding Sync

Many different frame synchronization methods have

been studied, but the DSN's current method is to compare

the true sync word (noiseless version) to a 32-bit segment

of decoded bits. Those bits found to be in disagreement are
counted. This count is then compared to a predetermined

threshold, T, optimized for a given bit error rate (BER).
If the number of disagreements is greater than T, those 32

bits are rejected as the sync word. Otherwise, tile 32 bits
are recorded as a sync word candidate. Successive one-bit

shifts of 32-bit received signal segments (sliding window)
are compared to the true sync word until the threshold test

is passed at the same location in two consecutive frames.

Once sync has been declared, testing for the sync word
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continues through all succeeding flames. If sync is lost,

the sliding window process is started again.

III. Analysis

Decoded data bits were generated using the 1-kbps

Viterbi decoder [4], also known as the Little Viterbi De-

coder (LVD). Tile LVD is a hardware decoder devel-

oped for use in testing long constraint-length convolutional
codes. The received symbols fed into tile decoder represent

encoded symbols generated from the all-zero information

bit sequence with pseudo-random noise added (i.e., noise

only). The LVD generated enough data to ensure that

100 error bursts were produced for each SNR of interest.

For each SNR tested, the decoded bits were subjected to

the threshold test for possible threshold values T, where
0 < T < 10. From a random 32-bit window of decoded

bits, this test determines whether tile number of decoded

bit errors in the observed window exceeds the given thresh-
old. A count is maintained of the number of 32-bit win-

dows for which the number of errors exceeds T. The 32-bit

window is then shifted to the right one bit until all possible

32-bit segments have been tested.

The two error components that influence the overall

performance of the frame synchronization scheme are the

probability of miss Pm and the probability of false alarm

PI" Pm is the likelihood that the sync word is not detected

in the decoded bit stream. P! is the likelihood that the
sync word is falsely detected in an incorrect position in the

decoded bit stream. For this article, Pm was estimated
from the LVD error data as

X

Pm = g (1)

where

X = number of 32-bit windows where the number

of errors exceeds T

Y = number of 32-bit windows tested within a

given file

Assmning random data, P! is given by [5]

k=0

(2)

Note that Pra depends on the code and the SNR, but P/
does not.

Failure to acquire sync in one frame will occur if either

the location of the true sync word fails the threshold test

or if the sync word is falsely detected before the location

of the true sync word. The probability of acquiring sync
correctly within one frame Pc can be approximated for

small values of Pm and P! by [6]

1B __

Pc _ 1 - I'm - ---_*'i (3)

where

B = length of data frame

Next-frame verification requires that the 32-bit sync word
candidate found in the current frame be verified in the

next succeeding frame. To acquire sync correctly within

four frames, the threshold test must be passed correctly

in one of three ways: within tile first and second frames;

in the second and third frames after failing in the first

frame; or in the third and fourth frames after failing in

the second frame. Equation (3) can be extended to the

probability of acquiring sync correctly within four frames
with next-frame verification Pc4 for _mall values of pm

and P! by [6]

Pc4,_I-3P_ B-I: P} (4)

assuming that the decoded bit errors in the four frames

tested are independent.

IV. Results

If the SNR over the DSN channel were sufficiently

strong to ensure no bit errors, the received (decoded) sync
word would be identical to the true sync word. ttowever,

no matter what the SNR and threshold are, there is always
a nonzero probability that the sync word will not be found

correctly due to the possibility of random data mimicking

the sync word within T or fewer disagreements. Given this
possibility, the choice of threshold T requires a trade-off

between Pm and PI" As T increases, P,,_ improves very lit-

tle while P! increases substantially. This effect can be seen
in Fig. 4. Figure 5 shows how individual error components

P,_ and P! work to influence the overall perforn_ance of
the frame synchronization scheme.

Several figures have been drawn to quantitatively de-

scribe sync-aequisition probability using the (15,1/4) con-
volutional code. In all eases, Pm is determined from tile

output data of the LVD; P] is calculated from Eq. (2); and
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tile overall probability of acquiring sync correctly within

four frames is calculated from Eq. (4). The sync marker

length is 32 bits. Figures 1 and 2 plot the probability of
not finding sync correctly within four frames with next-

frame verification for a frame length of 5120 bits with in-

creasing SNR and T, respectively. Figures 3 and 4 plot

the same data for a frame length of 8960 bits. Figure 4

also shows a limiting case, SNR = c_ (Pro = 0), for which
the probability of not correctly acquiring sync is entirely

due to the possibility of false alarms. If threshold T is set

too high, the result is unacceptable performance no mat-

ter how high the SNR. Figure 5 replots one of the curves

from Fig. 4 with additional curves showing two individ-

ual components (3Pro 2 and __!p! 2) contributing to the

probability of not correctly acquiring sync. In this figure,

PI is shown to have little or no influence on the perfor-
mance until the critical point where Pm and P! intersect

(T _ 6). At this point P! begins to overwhelm Pro. Note
that the Pm component is dominant for smaller thresholds

(T < 5) while the P! component is dominant for higher

thresholds (T _> 6). Figure 6 plots Pm versus P! curves for

various SNRs. The plot symbols in this figure represent
threshold values T when 0 < T < 7. Observe that the

corresponding thresholds of each curve have the same PI

value, providing evidence as shown in Eq. (2) that P! is

independent of SNR.

V. Conclusion

In general, choosing a threshold for the DSN communi-

cation system should be based on the system's operating

point. IIowever, other important factors to be considered

include the frame-to-frame verification strategy, tile length

of a frame, and tile size of the sync word. Therefore, the

following recommendations are based only on the frame

synchronization scheme described above. In order to max-
imize the probability of acquiring sync correctly within
four frames with next-frame verification in tile area of in-

terest, SNR = 0.5 dB (Viterbi decoder 13ER = 5 x 10-3),
a threshold value of five would be optimal for each of the

frame lengths tested (5120 and 8960 bits). IIowever, us-

ing a threshold of five for SNRs above those tested would

result in a sync acquisition rate that is less than optimal.

If slightly higher SNRs are anticipated, a threshold of four
would be more appropriate.
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In this article the planetary ephemerides approximation for radar astronomy is

discussed, and, in particular, the effect of this approximation on the performance

of the programmable local oscillator (PLO) used in Goldstone Solar System Radar

is presented. Four different approaches are considered and it is shown that the

Gram polynomials outperform the commonly used technique based on Chebyshev

polynomials. These methods are used to analyze the mean square, the phase error,

and the frequency tracking error in the presence of the worst-case Doppler shift

that one may encounter within the solar system. It is shown that in the worst case

the phase error is under one degree and the frequency tracking error less than one

hertz when the frequency to the PLO is updated every millisecond.

I. Introduction

Planetary ephemerides are used in radar astronomy to

transmit a coherent beam in the direction of a planet. This

beam is reflected from the surface of a planet, and the

measured Doppler shift from the reflected beam is used

to reconstruct a two-dimensional radar image [1,2]. Both

the transmitter and the receiver frequencies may be pro-

grammed in some situations. For example, it is common to

transmit the uplink signal to cause the frequency at one

station to remain constant while correcting the frequen-

cies at the other stations to compensate for the Doppler

difference.

The Navigation Systems Section of the Jet Propulsion

Laboratory provides high precision planetary and celestial

body ephemerides for various studies. The ephemerides

are computed by numerical integration of a model of the

solar system. 1 Saving the ephemerides at every integration

step would result in prohibitively large data files, and it

is not computationally feasible to run this program in real

time to generate the ephemerides data. Thus, it is essential

to approximate the ephemerides with a set of polynomials

and use this set to generate the ephemerides in real time.

The main purpose of this article is to investigate four

different approaches for the ephemerides approximation.

It is concluded that the Gram polynomials consistently

outperform the commonly used technique based on the

Chebyshev polynomials. In fact, in some cases the mean-

1 E. M. Standish, Jr. and D. K. Yeomans, Navigation Systems
Section, Jet Propulsion Laboratory, Pasadena, California, private
communication, November 14, 1989.
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square error (MSE) is lower by a factor of one hun-
dred. Furthermore, it is shown here that using a piecewise

orthonormal expansion is superior to the classical least

square fit when the number of data points is large. The

computational complexity of using the Gram polynomials

is equivalent to that of any other polynomial approxima-
tion of the same degree. One can intuitively explain the

superior performance of the Gram polynomials by noting

that they form a complete orthogonal set on an evenly

partitioned interval (see Section IV.A).

For applications to NASA's Deep Space Network (DSN)

and the Goldstone Solar System Radar (GSSR) [1,3], the

ephemerides are converted into an integer valued frequency

control word, which is used by a digital frequency syn-

thesizer (DFS) to produce a sinusoid at an intermediate
fi'equency (IF). 2 The theory and the design of the DFS

for radar astronomy are described in detail in [4]. In Sec-
tion VII, it is assumed that the reader is familiar with the

theory of operation of the DFS as described in [4].

Figure 1 shows the overall configuration of the X-band

exciter [5]. This exciter is used for the transmission of a
coherent X-band signal from the DSN station to a distant

planet. The reflected signals are used for generating radar

images of the planet [1,2].

The design of the exciter is based on using a high-
resolution programmable local oscillator (PLO) with con-

trollable phase and frequency. The output of the PLO

is ideally a single carrier with a frequency range of 10 to
20 Mttz.2 The block diagram of the PLO is given in Fig. 2.

It is composed of a DFS and digital-to-analog conversion

module, and is controlled by a host via a parallel interface.

The host software driver for the PLO controls both the

frequency and the phase of the DFS. The phase and the
frequency of the DFS are computed from the ephemerides

data and are updated at a constant rate by the host. In

approximating the ephemerides, it is important to use the

least degree polynomial which gives the satisfactory ap-

proximation. As the degree of the approximating polyno-
mial increases, the computation time also increases, and

as a result fewer updates from the host will be possible.

Furthermore, the effect of changing the frequency of the
DFS as a function of the ephemerides introduces frequency

modulation at the output of the PLO. In Section VII of

this article both of these issues are addressed: namely,
the effects of the update rate on the phase and frequency

tracking error, and on the output spectrum of the PLO.

2 F. H. Jurgens, "High Level PLO Definition," JPL Interoffice Mem-

orandum 331-90.10-009 (internal document), Jet Propulsion Lab-

oratory, Pasadena, California, February 19, 1990.

II. Effect of the Doppler Shift on the
DFS Input

In the application of DFS for the GSSR, frequency con-
trol word Fr is updated at the fixed rate corresponding to

the worst case Doppler shift that one may encounter. Let

R denote the distance between the Earth and the planet

that is being tracked. The rate of the change of this dis-

tance, when the planet is at position x = x(/), is

d/_ v • x
- (1)

dt R

where v denotes the velocity of the planet relative to the

Earth. Let Fo denote the output frequency, and c the

speed of light, then the Doppler shift AF is

AF- dR/dt (2)
cFo

The ephemerides provide the value of AF in tabular form,

and as explained earlier, it is essential to fit a polynomial

to the function ¢(t) = dR/dt.

III. Method of Least Squares

In approximating the ephemerides, it is assumed that

there exists a real valued function f(x) such that f(xi) rep-
resents the sampled values fi at the point zi. The problem

of approximating the sequence {fi,i = 1,...,N}, with a

function y(z), is formulated by using the MSE measure e.s

a merit function [2,6]. A space of functions is fixed and a
basis qli = {¢i} is supplied. Let X denote the MSE, i.e.,

X 2 = _ f(xi)-- akCk(Xi)
i=1 k=l

(3)

The coefficients ax,.. •, aM are chosen to minimize X 2, For
such ai, set

M

(4)
k=l

For example, if ¢i(z) = z i-1 with i = 1,...,M, then a

polynomial approximation to f is obtained.

If one defines the N x M matrix A and the N x M

vector b by
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A

_1(Xl) _2(Xl)

_1(X2) _2(X2)

(_1 (XN) ¢2(XN)

CM(Xl) \

CM(X2)/ '
_)MiXN)/

b I1/f_

fN

(_)

then the solution a = (al,...,aM) to the above minimiza-

tion problem satisfies the equation

AT Aa = ATb (6)

This equation is also known as tile normal equation of

the least squares. It is convenient to set A = (Akj) and

B = (/3k) where

N

i=1

N

13k = E fiCk(zi) (7)
i-=l

Then Eq. (6) becomes

Aa =B (8)

In most applications (especially when N is large), the nor-

mal equation is nearly singular, and singular value decom-

position (SVD) must be employed [7] to solve for a. SVD
requires much more extra storage and computation than

solving the normal equation. In Section IV, an alternative
solution for this minimization problem is considered.

IV. Orthonormal Expansion

In this section it is assumed that {¢i(x), i = 1,2,...} is

a complete orthonormal set relative to a measure dp(x), in

the interval [a,b], i.e., < ¢i(x),¢j(z) > = 5ij, for all i ¢ j,
where the inner product < . > is given by

< u(x), ,(x) > = y(,:)z(x)d# (9)

Then y(x) = _ < y, dj > ¢j(x)in the L2-sense.

Any function f(x) E C[a,b], where C[a,b] denotes tile
space of continuous functions on the interval [a, b], has an

approximate expansion

M

f(x) _ _ ai¢i(x) (10)
i=l

where M is large. An exact solution is, in general, not

possible, and the choice of a = (al,...,aM) which mini-
mizes

= - _ai¢i(x) dpx fb f(x) M 2
(11)

is given by ai = < f, ¢i >. Similar considerations apply to
the discrete case. ttere the domain of tile fimctions is the

set A = {xt,x_,...,XN}, and p is a non-negative measure

on A. It is assumed that the points xi are equally spaced

in the interval [a, b]. The inner product becomes

N

i=1

(12)

When the basis functions form a complete orthonormal

set, then all the nondiagonal terms in the matrix A are

zero and the computation of a in Eq. (8) is reduced to

inverting the diagonal matrix A. ttence, the complexity
is substantially reduced when compared to directly solv-

ing the simultaneous set of normal equations in Eq. (8),

or using the SVD method. This savings is accoinplished

without any degradation in the overall average MSE. In
the following two sections, two special classes of orthogo-

hal polynomial equations that are used for computing the

interpolating polynonfial for the ephemerides are specifi-
cally considered.

A. Chebyshev Polynomial Equations

The Chebyshev polynomials have been widely used for

approximating the planetary ephemerides [3]. In this sec-

tion, this class of polynomials is described and its short-
coming for this case is outlined.

The Chebyshev polynomial of degree n is

T.(*) = cos[,, cos-'(_)] (13)

Using elementary trigonometry, one can show the following
reeursion formula

T,,+_(_) = 2_T,,(x) - T._t(_) (14)
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for n > 1 with the initial condition To(x) = 1. The

set of Chebyshev polynomials is a complete orthonormal

set in the interval [-1,1] relative to the measure dp(x) =

(1- x2)-a/2dx. The orthogonality property of the Cheby-
shev polynomials is given by the formula

j Ti(x)Tj(x) { 0 i 7£ jdx= 7r/2 i=j¢O
-1 7r i=j=0

(15)

Note that this orthogonality condition is only for the mea-

sure dp(x). The Chebyshev polynomials also satisfy the

discrete orthogonality relation

N {0 iT_jZ Ti(x,)Tj(x,)= N/2 i=j#O
,_=1 N i=j=O

(16)

where xns range over the zeros of TM(X). Note that the

zeros of Tk are

_(n - ½) (17)
Xn _ COS k

Ill Fig. 3, the Chebyshev polynomials of degree up to five
are shown. Since the points {x,_ } are not uniformly spaced

and the planetary ephemerides are computed at equally

spaced time intervals, the application of the Chebyshev

polynomials is hardly appropriate. Ill the next section, the

Gram polynomials are described, which are more suitable
for this application.

B. Gram Polynomial Equations

The Gram polynomial equations are most suitable for

obtaining approximations to the planetary ephemerides or
other data obtained by sampling at equally spaced time

intervals.

The Gram polynomial [8] p,,(x, 2L) is defined by

pn(x,2L) = _ (-1) k+n (j + k)(_k) (L + x) k
k=0 (k!)2 2L(k)

(18)

where

n-1

x (_)=x(x-1)(x-2)...(x-n+l)= I-[(x-j)
j=O

with x (°) = 1. Grain polynomials satisfy the orthogonality
relations

k=L

Z pi(k, 2L)pj(k,2L) = 0
k=-L

for i 7_ j

k=L (2L + i + 1)[(2L - i)!

Z p_(k, 2L) = (2i + 1)[(2L)!] 2
k=-L

(19)

Figure 4 gives tile graphs of the polynomials Pl, • •., Ps, for
L=IO.

V. Piecewise Polynomial Approximation

In this section, the result of Section III is extended to

take into account the boundary conditions. Tile motiva-

tion for this extension is that the interpolated function

approximating the planetary ephemerides is used as an

update for the frequency control to the DFS, and it is nec-
essary for this function to be continuous. It is shown later
in Section VI that considerable improvement is achieved in

the MSE, when the ephemerides data are subdivided into

blocks, and each block is approximated using a different

set of polynomials. To incorporate the boundary values,
the values at the end-points are introduced as constraints

in the original minimization problem, i.e., the following

minimization problem is considered

b f(x) M aiCi(x) 2X'_(a) = [ - _ dp (20)
i--1

subject to:

ai¢i(1) = A

Z ai¢i(-1) = B

Evaluating tile partial derivative of X with respect to ai

and setting it equal to zero yields the following set of equa-
tions:

Oaj 0 _ _ Ck(xi)Oj(xi)p(xi) at.
k

=_-_ f(xl)¢j(x,)p(x,) (')1)

These equations form a system of 51+2 equations in M+2

unknowns, namely Ca = L where
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C

¢,(i) ¢_(1) ...
¢1(-1) ¢_(-1) ...

¢M(1)
¢M(--1)

-¢1(1) -Ca(-1)

-¢2(1) -¢_(-1)

--¢M(1) --¢M(--1)

0 0

0 0

(22)

and the vector L is given by

Lj = _ f(xi)¢j(xi)p(xi) for 1 < i < N
i

(23a)

LN+I = A and LN+2 = B (23b)

In the next section, the performance of the algorithms in-
troduced here will be evaluated by numerical simulations
for a number of cases.

Vl. Numerical Simulations

The simulation results in this section are based on using

one of the two following orthogonal bases. The Chebyshev

polynomial equations of degree five or less in the interval

[-1,1] are

A= {1, y, --l + 2y 2,-3y+4y 3,

1 -- 8y _ + 8y 4,5y- 20y a + 16y 5} (24)

The Gram polynomials of degree five or less in [-120,120]
are

x 121 x 43559 x aA = 1,120' 239 + 9560' 3412920 x + 68258------4'

7381 12445 x2+ x 4
18881 46220688 46220688'

37639643 9679 xa
2272517160 x 1818013728 + 3030O22880

(25)

In tile first set of experiments, the performance of each

one of the proposed techniques for a discrete time func-

tion is compared. The original function y(x) is a sampled

second-order Chebyshev polynomial translated into the in-

terval [0,1000]. This choice was intentionally made to show

that even for a uniformly sampled Chebyshev polynomial,

the Gram polynomial approximation outperforms the clas-

sical Chebyshev polynomial approximation• The results of

this experiment are shown in Figs. 5 and 6. In Fig. 5 the
original function is shown with 240 uniformly spaced sam-

ples between 0 and 1000. The interpolated function is not

shown, since it is very close to the original function. The

error sequence between the original sampled sequence and

the approximating function resulting for each method is
shown in Fig. 6. The corresponding MSE from Eq. (3)

and the resulting polynomials are given in Table 1.

In Table 1, the MSE decreases by an order of one half

when the number of sampled points in the original function

is increased from 240 to 1000 points. The least squares

method in this case was solved by using the SVD, and

it gives a smaller MSE than the orthonormal expansion
method. Note that the MSE is lower in each case when the

Gram polynomials are used for approximating the original

function, which in this case is itself a sampled third-order

Chebyshev polynomial.

In the next two sections, these techniques are directly

applied to the cases of this study, namely, the ephemerides
data.

A. Phobos Experiment

Phobos is a Martian moon. It completes an orbit of

Mars approximately each eight hours, and its high speed
accounts for one of the highest Doppler shifts encountered

in the solar system. For this reason, Phobos' ephemerides

were chosen for this case study. The original ephemerides

are obtained at one-half-minute intervals, resulting in 960
points. Here, the orthonormal expansion methods, as de-

scribed in Section III, are used. The method of least

squares becomes prohibitively complex with 960 points.

In Fig. 7(a) the Doppler shift is shown. The resulting

error sequence for each technique is shown in parts (b) and
(d). The interpolated function is given in Fig. 7(c).
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Note that the error sequence ill Fig. 7(c) is very close to
zero when shown in full scale. The fluctuation of the error

is within 5 percent of the full scale of the Doppler shift.

From Table 2, it is deduced that the constrained piecewise

Gram polynomial approximation is superior, in terms of
the MSE, to the orthonormal expansion.

B. Comet Experiment

Another interesting experiment is based on the data

simulating a celestial body (such ms a comet or an asteroid)

approaching the Earth at high speed. This is referred to as

the comet experiment. The results of this test are shown

in Fig. 8.

When the error sequences are compared, it becomes

obvious that the piecewise approximation method reduces
the end-point error by a factor of fifteen. From Table 3, it

is seen that the constrained piecewise polynomial approx-

imation outperforms tile orthonormal expansion method.

It is concluded from the numerical sinmlation in this

section that the constrained piecewise Gram polynomial

approximation has the least MSE.

VII. Frequency and Phase Error Due to

the Update Rate

There are four sources of error: (a) phase error between
the approximated Doppler and the actual Doppler, for the

whole period of the ephemerides, (b) phase tracking error,

which is the phase error between the PLO output phase

and the actual phase of the ephemerides, (c) frequency er-

ror between the approximated Doppler frequency and the

actual frequency, and (d) frequency tracking error, which
is the frequency error between the PLO output frequency

and the actual frequency of the ephemerides.

A key design parameter for using the PLO is the update

rate. This update rate must be chosen such that the phase

errors over the tracking period of the celestial body do not

exceed 1.2 degrees and the frequency errors also are kept
under 2 hertz.

The ephemerides phase and the frequency error are as-

sessed by using the polynomials from the piecewise Gram
polynomial approximation method, shown in Tables 2 and

3. Each polynomial is computed at the rate of once for

each update period. The phase error between interpolated

ephemerides and the actual ephemerides is evaluated by

hard quantizing the interpolated function and the original

function and computing the phase difference between each

waveform. The frequency error is found by evaluating the

largest deviation between the interpolated function (com-

puted at the update rate) and the original function, i.e.,

Af = Sup t f(t)- f(t) I (26)
t

The results are shown in Fig. 9 for the Phobos and the

comet experiments.

It follows from Fig. 9(a) that to maintain tile phase
errors under 1 degree during the whole tracking period,

and the frequency errors under 2 hertz, the update period
must be chosen to be less than 50 milliseconds.

The effects of the update rate on the frequency tracking

error for the output spectrum of the PLO can be analyzed

by considering a small segment (e.g., 1 minute) of the fre-

quency error variation between the synthesized and the

original function. During this period, this variation can
be modeled as a ramp shown in Fig. 10(a). It should be

noted that this is a valid approximation since the period

of the ephemerides (>__5 hours) is much larger than the

update rate, which ranges between 50 milliseconds and
2 seconds (slowly moving celestial bodies). During each

update rate, the frequency is either increased or decreased

for a long period (usually in minutes).

The output frequency of tile DFS (ranging between 10
to 20 MIIz) is approximated by the linear function whose

slope is

df ,,_ ](t) - ](t - T) (27)
dt T

and at the midpoint of the update period is equal to the

value of the interpolating function. The resulting phase
error is simply the integral of the frequency error, as shown

in Fig. 10(a)

f0 t
A¢(t) = 2r Af(r)dr (28)

In Fig. 10(b), the periodic phase error (in degrees) is shown

as a function of the update period T. For example, in the

case of the planets and their moons, one can roughly ap-

proximate their orbits as sinusoids [see Fig. 10(c )] and the

resulting phase error is given in Fig. 10(d). Note that
when the update period is very small compared to the

ephemerides period, one can locally approximate the sinu-

sold by the ramp function. Then the phase error becomes

approximately A¢ = 27r(df/dt)T2/8, see Fig. 10(b).
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The effect of frequency tracking error can be approxi-

mated by using classical results from frequency modulation
(FM) theory. Let p(t) be

{ [(;-);-]'
r -- O<t<T

p(t) =

0 otherwise

(29)

The output spectrum of tile PLO is found by evaluating
the spectrum of the signal o(t), which is

°(t) = sin ( w°t + ]3 Ek p(t - kT)) (30)

In FM modulation, the modulation index controls tile

spectral characteristics of the signal. In this case, the mod-

ulation index/3 = 2_r(df/dt)T2/8, where dr�dr is the slope
of the frequency ramp.

The pulse sequence in the phase term of Eq. (3) has the
Fourier series expansion as

p(t-kT) =-6 + 7 =
(31)

Therefore, o(t) is a nmlti-tone FM signal for k ranging
over a finite set. It can be shown, as in [10], that the

spectrum of this signal can be approximated by certain

sums of products of Bessel functions of the following form

E E 52 II J,,, cos c'+Z ,
nl na nL i=1 k=l

%, •

f
(32)

The series in Eq. (32) is composed of line spectrums in

frequency domain, with a carrier component of amplitude

Jo(]3) .... , Jo[fl/( L - 1)2], Jo(]3/ L 2). The analytical eval-

uation of the magnitude of each term in Eq. (32) is dif-

ficult, due to the intermodulation products, tlowever, if

the magnitudes of the harmonics of fo - 27r/T and the in-

termodulation products are below -98 dBc, then they are
masked in the output spectrum by the quantization noise

induced internally in the DFS (the spectral purity of the

DFS is -98 dBc [4]).

The authors have developed a program for the numer-

ical computation of each term in Eq. (32). Itere, an ex-
ample for Phobos is presented, which represents the worst

case in terms of the rate of change of the frequency. Let

df/dt = 30 IIz/sec, and T = 3 msec, then ]3 = 3.75 x 10 -4.

In Fig. 10, the line spectra of two cases with/3 = 1/Tr and

]3 -- 3.75 X 10 -4 are shown. In Figs. ll(a) and ll(b), the
integer n represents the frequency fo - 2n_r/T. Note that

for the update period of 3 msec (]3 = 3.75 x 10 -4) the
magnitude of the harmonics at .to - 27r/T = 10002094 lfz

(with fc = 10 MlIz) is around-100 dBc, and the spec-

tral lines due to the intermodulation products are below

-300 dBe. It follows that an update rate of 1 KlIz (for
Phobos) is sufficient to guarantee that the effects of the

frequency update rate have impact on the spectral purity
of the PLO.

VIII. Conclusion

An algorithm is described for piecewise orthonormal ex-

pansion in terms of Gram polynomials. This method out-

performs other approaches in terms of the MSE by a factor

of one hundred in some cases. This algorithm was applied
to a number of cases for the ephemerides approximation.

Using the piecewise Gram polynomial approximation al-

gorithm, the programmable local oscillator can operate at
a mininmm frequency update rate of 2.94 ktlz to maintain

a minimum worst-case phase error of at most 1.0 degree

when tracking a moon such as Phobos, which represents

one of the worst cases of Doppler shift that may be en-
countered in the solar system.

225



Acknowledgments

The authors appreciate the support and suggestions of Dr. Ray Jurgens, and

also thank Steve Morris, David Hills, and Dr. Loris Robinett for their support of

this work, and Dr. M. Standish and Dr. D. K. Yeomans of the Navigation Systems

Section for providing the ephemerides data.

References

[1] F. R. Jurgens, "Earth-Based Radar Studies of Planetary Surfaces and Atmo-
spheres," IEEE Trans. Geo. Rein. Sen., vol. GE-20, no. 3, July 1982.

[2] H. C. Rumsey, G. A. Moris, R. R. Green, and R. R. Goldstein, "A Radar Bright-
ness and Altitude Image of a Portion of Venus," Icarus, vol. 23, pp. 1-7, 1974.

[3] X X Newhall, "Numerical Representation of Planetary Ephemerides," Celestial
Mechanics, vol. 45, 1989.

[4] R. Sadr, E. Satorius, L. Robinett, and E. Olsen, Digital Frequency Synthesizer
for Radar Astronomy, JPL Publication No. 90-32, Jet Propulsion Laboratory,

Pasadena, California, August 1990.

[5] B. Conroy and D. Le, "Multipurpose Exciter with Low Phase Noise," TDA

Progress Report 42-97, vol. January-March 1989, Jet Propulsion Laboratory,
Pasadena, California, pp. 169-174, May 15, 1989.

[6] L. Rabiner and B. Gold, Theory and Application of Digital Signal Processing,
New Jersey: Prentice IIall, 1975.

[7] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical

Recipes in C, Cambridge, England: Cambridge University Press, 1988.

[8] A. Ralstan, A First Course in Numerical Analysis, New York: McGraw-Hill,
Inc., 1965.

[9] M. Schwartz, W. R. Bennet, and S. Stein, Communication Systems and Tech-

niques, New York: McGraw-ttill, Inc., 1966.

226



Table 1. Results of the approximation algorithms

Approximation Mean-square error Polynomial
algorithm

240 points Chebyshev 0.0773128 - 0.865531 + 0.0735729x
orthonormal expansion - 0.000826432x _

+ 0.00000228612x 3

1000 points Chebyshev - 937736 + 0.0178576x

orthonormal expansion - 0.0000479041_ 2
+ 3.19042 × 10-Sx a

240 points least squares - 1.0 + 0.0746888x
Chebyshev polynomial - 0.000826432x 2

+ 0.00000228612x 3

240 points least squares - 1.0 + 0.07,t6888x
Gram polynomial - 0.000826432x 2

+ 0.00000228612x 3

240 points Gram - 8.878124 + 0.0673012_

orthonormal expansion - 0.000703089x 2
+ 0.00000153851x a

0.0359122

3.456 x 10 -6

1.81487 X 10 -15

O.O3O82O2

Table 2. The Phobos experiment

Approximation
algorithm Mean-square error Polynomial

Gram polynomial 9358.31 - 1.00546 x 106 - 1.83.043x

orthonormal -3.5313x 2 + 0.00924722x 3

expansion - 5.57485 X 10-6x 4

Constrained plecewise 8936.54 - 1.01784 x 106 - 346.157x

Gram polynomial -2.91032x 2 + 0.0083382x 3
approximation - 5.12973 × I0-6x 4

Table 3. The comet experiment

Approximation Mean-square error Polynomial
algorithm

Gram polynomial 800.046 - 127756 - 167.347x

orthonormal expansion - 0.038991x 2
+ 91.2606 x 10-6x a

- 3.41438 x 10-8x 4

235.818 - 130512 -- 193.964x

- 0.112562x 2

+ 16.7592 x 10-6x 3
- 6.05596 X 10-6x 4

Constrained piecewise

Gram polynomial

approximation
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20- to 40.5-GHz Range
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Future space research communications systems may require spectra above

20 GHz. This article identifies frequency bands above 20 Gtlz that are suitable

for space research. The selection of the proper bands depends on consideration of

interference with other radio services, adequate bandwidths, link performance, and

technical requirements for practical implementation.

I. Introduction

One of the areas of study in preparation for the World

Administrative Radio Conference (WARC) of 1992 is the

identification of bands above 20 Gttz that could be used

for space research. Figure 1 shows the existing alloca-

tions for space research (active) between 20 and 40.5 GHz.

From Fig. 1, it can be seen that there are limited bands

for space research. Therefore, a study was undertaken

to identify additional bands between 20.0 and 40.5 GHz

that are appropriate for space research. The criteria for

selection of the new space research bands are provided.

Several proposed frequency bands are chosen for consid-

eration. Detailed band sharing studies between space re-

search and existing services in these proposed bands are

available) Hardware considerations are discussed. Foot-

1 D. F. Bishop, "Background Material for Selection of New Space
Research Frequency Bands Above 20 GHz," JPL Interot_ce Mem-
orandum 3396-90-90 (internal document), Jet Propulsion Labora-
tory, Pasadena, California, November 26, 1990.

note 1 contains diagrams of hardware circuitry that call

be used to provide coherence between the proposed space

research bands and the existing space research allocations

at 2 GHz (S-band) and 7 to 8 GHz (X-band).

II. Criteria for New Space Research Bands

Several criteria went into the selection of potential

space research bands. Minimum bandwidths of 500 Mltz

were sought for all proposed bands. Only bands between

20 GHz and 40.5 GHz were considered. Passive sensor

bands in the space research services and radio-astronomy

services were avoided to protect their sensitive receivers.

To use tile same antenna for transmit and receive opera-

tion, a minimum frequency spacing of 7 percent was de-

sired. Coherence between the new band proposals and

existing space research allocations at 2 Gttz (S-band) and

7 to 8 GHz (X-band) was desired, Minimal interference

with existing services in the proposed bands was sought.

Since even small rainfall rates cause significant link degra-
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dation at frequencies above 20 Gtlz, it was not considered

practical to select bands above 20 Gtlz based on weather

conditions. Therefore, the effects of rain and clouds were
not considered. The band selection in this article is based

on clear-weather performance.

III. Proposed Space Research Allocations

Based on the criteria of Section II, preliminary bands

were selected as candidates for space research. Figures 2

and 3 show these bands. The band edges were selected to

conform to the band edges that appear in the International

Telecommunication Union (ITU) Table of Frequency Allo-

cations ([1], page RRS-9). This was done to provide simple
inclusion of a space research allocation should the proposal

be accepted. Parts of these bands may not be suitable for

space research due to hardware limitations or harmonic
interference as demonstrated in tile next section.

IV. Radio Frequency Interference Analysis

One of the criteria for the selection of new space re-
search bands was to have minimal interference with ex-

isting services. The potential interference was shown by

performing sharing analyses between existing services and
space research in the bands shown in Figs. 2 and 3. Two

different scenarios were used for the space research ser-

vices. In the first scenario, the space research spacecraft

was located at the L1 Lagrangian (libration) point in the

Earth-moon system [2]. Figure 4 contains an illustration
of this scenario. In the second scenario, the space research

spacecraft was located in a circular orbit around the Earth

with an altitude of 500 km (Fig. 5). This is a typical orbit

for a low Earth-orbiting spacecraft in the space research
service.

Table 1 contains an example of a detailed sharing anal-
ysis. In this scenario, the 21.4- to 22.0-GHz band is pro-

posed for space research in the space-to-Earth direction.

In this frequency band there is a primary allocation for

fixed and mobile services. Therefore, there is a potential

for interference with a ground station in the space research

service. Radio Regulation 2505 ([I], page RR27-2) permits

a maximum Effective Isotropic Radiated Power (EIRP) of
55 dBW for a fixed or mobile service. This is the first entry

on Table 1. The receiver bandwidth for a fixed radio relay

system near 22 GHz is 40 MHz [3]. For simplicity, it is as-
sumed that the total transmitter power is spread uniformly
over this 40-MHz bandwidth; therefore, the spectral den-

sity level is -76.0 dB/Hz (10. log{(40. 106J-x}). This is

the second entry on Table 1.

The third entry on Table 1 is the great-circle path loss.

The great-circle path loss is selected to yield an interfer-
ence margin of 0 dB in Table 1. The great-circle path

loss determines a coordination distance [4]. A horizon an-

gle of zero degrees is used. Larger horizon angles would

yield lower interference levels at the Earth station receiver.
Radio zone A2 is used. This zone contains Goldstone, Cal-

ifornia. The rate of attenuation due to all effects except

atmospheric gazes is determined for 0.001 percent of the
time. This is the percentage of time that is recommended

to protect deep-space research missions [5]. The result is
that a coordination distance of 202 km between the fixed

service transmitter and the space research Earth station is

required.

The interference signal from the fixed service transmit-
ter approaches the space research Earth station fi'om the

horizon. If it is assumed that the space research Earth sta-

tion has an elevation angle of 10 degrees, t]len the gain of
its antenna toward the horizon is 7 dBi (32 - 25 • log(10])

from the ITU reference pattern [6]. This is the fourth en-

try on Table 1. The first four entries on Table 1 are added

to yield the interference level at the space research Earth

station receiver. The space research Earth station interfer-
ence criterion is set equal to the deep-space Earth station

interference criterion [7] at 32 GItz since deep-space Earth
station receivers are often used for near-Earth space re-
search, and it is closest in frequency to this proposed band
from 21.4 to 22.0 GHz. The difference between the in-

terference criterion and the interference level is the inter-

ference margin. In this case, the interference margin is

0.0 dB. Recall that the great-circle path loss w_s selected
to yield an interference margin of 0 dB. This is the de-

sired value. Coordination distances of greater than 202 km

would yield positive values of interference margin. There-

fore, the fixed services can share the 21.4- to 22.0-GHz

band with space research (space-to-Earth) if the coordina-

tion distance between the stations is greater than 202 km
measured over a great-circle path.

Footnote 1 contains the detailed sharing analyses that

were performed in all of the proposed bands for space re-

search. A summary of these sharing analyses is contained

in Tables 4 through 12. These tables indicate the pro-
posed frequency band, existing services in that band, the

source of interference, the interference victim, the coordi-

nation distance for terrestrial interference sce_arios, and

the interference margin.

During the course of the study, another constraint on

proposed bands was added. It was suggested that avoid-

ance of harmonic interference from current space research

allocations at 2 GHz (S-band) and 7 to 8 GHz (X-band)
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is necessary. Therefore, the harmonics of the 2-GHz

(S-band) and 7- to 8-GHz (X-band) allocations for space
research that exist above 20 GHz were investigated. The

allocations for near-Earth and deep-space research were

considered because deep-space research equipment is often

used for near-Earth space research. Table 2 contains some
of the harmonic frequencies for space research (Earth-to-

space) bands. The tenth harmonic of the space research
allocation at 2 GHz (S-band) that is shown in Table 2

is probably too small to interfere with services in tile har-

monic band. Higher order harmonics should be even lower.
The harmonics of the space research allocation at 7 to

8 Gliz (X-band) that are shown in Table 2 may be large
enough to cause interference. Therefore, these harmonic

bands should be avoided by space research services. Space

research ground stations that receive at these frequencies
would be especially vulnerable to uplink harmonic emis-
sions.

Table 3 contains some of the harmonic frequencies for

space research (space-to-Earth) bands. The ninth har-
monic of the space research allocation at 2 GHz (S-band)

that is shown in Table 3 is probably too small to inter-

fere with services in the harmonic band. Higher order
harmonics should be even lower. The harmonics of the

space research allocation at 7 to 8 GHz (X-band) that are

shown in Table 3 may be large enough to cause interfer-

ence. Therefore, these harmonic bands should be avoided

by space research services. Space research spacecraft that

receive at these frequencies would be especially vulnerable
to these downlink harmonic emissions.

V. Hardware Considerations

tlardware characteristics influence the selection of new

bands for space research. Hardware design personnel indi-

cated that a minimum spacing of 7 to 8 percent between
the uplink and downlink frequencies is required to build

practical diplexers. The use of a diplexer allows the same

antenna to be used for uplink and downlink. The diplexer

restricts the maximum spacing between uplink and down-

link frequencies to 50 percent. Typically, space research
services use circularly polarized signals. These circular

polarizers limit the maximum spacing between uplink and

downlink frequencies to 20 percent. Therefore, if a diplexer

and a circular polarizer are used, tile frequency spacing

between uplink and downlink should be between 8 and

20 percent.

An additional hardware requirement is that the new

space research allocations must be coherent with the ex-

isting allocations at 2 GIIz (S-band) and 7 to 8 Gttz

(X-band). The requirement is that the 2-Gllz (S-band)
downlink, the 7- to 8-GIIz (X-band) downlink, and the new

downlink (above 20 Gltz) must be derived by the space-

craft transponder from the new uplink (above 20 Gllz).

Figure 6 contains an example of a circuit "_that can pro-
vide coherence between the downlink fi'equencies and the

uplink frequency. The uplink frequency of 24.46 Gllz is

within the proposed band of 24.25 to 25.25 Gllz for space

research (Earth-to-space). The circuitry derives an out-

put frequency, Fa (4 • 20.18 MIIz). This frequency is

used as an input for three multiplier chains that derive

the three downlink frequencies. The first downlink fre-
quency of 27.77 GlIz is within the proposed band of 27.5

to 29.5 GtIz for space research (space-to-Earth). The sec-

ond downlink frequency of 8.48 Gl[z is within the 8.45- to

8.50-Gltz band for space research (space-to-Earth). The

third downlink frequency of 2.26 GHz is within the 2.20- to
2.29-Gttz band for space research (space-to-Earth). There-

fore, coherence between the downlinks and the uplink has

been provided. Additional circuits that provide coherence

for spacecraft transponders are contained in Footnote 1.

VI. Preferred Bands for Space Research

A comparison of link performance for the proposed

space research bands in Figs. 2 and 3 was conducted in

[8]. The conclusion was that tile bands above 30 Gllz pro-

vided improved link performance compared to the bauds

between 20 and 30 GIIz. The downlink had up to 1-dB im-

provement and the uplink had up to 4.7-dB improvement.
Above 30 GIIz, the 30.0- to 31.3-Gltz band (dow,dink)

would be paired with the 34.2- to 35.2-Gllz band (up-

link) and the 37.0- to 37..5-GIIz band (downlink) wouhl be

paired with the 39.5- to 40.5-Gllz band (npliuk).

Interference with other radio services in the 30.0- to

31.3-GIIz band is minimal. The worst case interference

occurs to a standard frequency and time signal satellite

(SFTSS) Earth station from a low Earth-orbit space re-
search satellite. In this case, there couhl be up to 26.5 sec-

onds of interference during the worst orbit. All interforence

scenarios have low probabilities of occurrence.

In tile 34.2- to 35.2-Gtlz band, there are some cases
where interference can occur. Coordination of airborne-

mobile or airborne-radiolocation stations in sight of space
research stations is not practicable. Space research space-

craft within sight of terrestrial radiolocation stations

2 Transponder circuits provided by C. E. Johns of tim l{adio Fre-

quency and Microwave Subsystems Section, Jet Propulsion

Laboratory, Pasadena, Califorltia.
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would receive severe interference. Coordination of fre-

quency assignments would be a method to reduce inter-
ference. In the 37.0- to 37.5- and 39.5- to 40.5-Gltz bands,

coordination distances are small enough that sharing be-

tween space research and other services is possible. Coor-
dination with airborne stations is not practicable. Other-

wise, the interference potential is minimal.

VII. Summary and Conclusions

A search of tile 20.0- to 40.5-GtIz band has been made

to identify frequency bands that may be used for space
research. The criteria used for selection of the proposed

bands are indicated. Several potential frequency bands are

presented. Detailed band-sharing studies between space

research and existing services in these proposed bands are

provided in Footnote 1. llardware constraints are dis-
cussed. Footnote 1 contains diagrams of hardware cir-

cuitry that can be used to provide coherence between the

proposed space research bands and the existing space re-

search allocations at 2 GHz (S-band) and 7 to 8 Gltz

(X-band). Lastly, preferred frequency bands for space re-
search ill the 20.0- to 40.5-GIIz range are indicated.

Considering link performance and hardware implemen-

tation, tile following band pairs are recommended for the

space research service in the 20.0- to 40.5-Gtlz range:

30.0 to 31.3 Gllz space research, space-to-Earth, pri-

mary in all three ITU regions, and

34.7 to 35.2 Gllz space research, Earth-to-space, pri-

mary in all three ITU regions

or:

37.0 to 37.5 GIIz space research, space-to-Earth, pri-
mary in all three ITU regions, and

39.5 to 40.5 GIIz space research, Earth-to-space, pri-
mary in all three ITU regions.

Fl'om a hardware standpoint, the first band pair has

the advantage of proximity to existing deep-space research
allocations at 31.8 to 32.3 GtIz and 34.2 to 34.7 GIIz.

However, the second band pair has a lower potential for
interference with other radio services.
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Table 1. Sharing analysis between fixed and mobile services

and space research in the 21.4- to 22.0-GHz band

hderference to a space reseaa-ch Earth
station

Fixed or mobile station EIRP

(maximum allowed - ITU RR2505)

Spectral density level

(uniform spectrum - 40-MHz
bandwidth [3])

Great-circle path loss

(202 "kin, Ah = O, zone A2, 0.001%

of time)

Space research Earth station tmtenna
gain t owea'd the horizon

(10-deg elevation angle, CCIR

pattern)

hlterference level at space research
Earth station receiver

Space research interference criterion

Interference margin

55.0 dBW

-76.0 dB/llz

-203.3 dB

7.0 dB

-217.3 dBW/ltz

-217.3 dBW/llz

0.0 dB

Table 2. Harmonic bands for space research (Earth-to-space)

Space research ttarmonic Harmonic b;md,
allocation band, Gllz number Gllz

2.025 - 2.120 10 20.25 - 21.20

7.145 - 7.235 3 21.435 - 21.705

7.145 - 7.235 4 28.58 - 28.94

7.145 - 7.235 5 35.72 - 36.18

7.145 - 7.235 6 42.87 - 43.,11

Table 3. Harmonic bands for space research (space-to-Earth)

Space research llarmonic Iiarmonic baatd,
allocation band, Gltz number GHz

2.20 - 2.30 9 19.80 - 20.70

8.40 - 8.50 3 25.20 - 25.50

8.40 - 8.50 4 33.60 - 34.00

8.40 - 8.50 5 42.00 - 42.50

Table 4. Summary of sharing analysis for 21.4 to 22.0 GHz tor space research

(space-to-Earth)

Existing Interference Interference Coordination Interference

services source victim distance, km margin, dB

Fixed and Fixed or Space research 202 0.0
mobile mobile Earth station

Space research Fixed or mobile -- 24.8

spacecraft, Case 1

Space research Fixed or mobile -- --12.4

spacecraft, Case 2

Table 5. Summary of sharing analysis for 23.0 to 23.6 GHz for space research

(Earth-to-apace)

Existing Interference Interference Coordination Interference
services source victim distance, km margin, dB

Fixed and Fixed or mobile Space research -- 8.7

mobile spacecraft, Case 1

Fixed or mobile Space research -- -28.5

spacecraft, Case 2

Space research Fixed or mobile 250.4 0.0
Earth station

Intersatellite Relay satelfite Space research -- -2.3

spacecraft, Case 1

Relay satelfite Space research -- --22.2
spacecraft, Case 2

Space research Intersatellite -- - 113.4
Earth station satellite
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Table6.Summaryofsharinganalysis for 24.25 to 25.25 GHz for space research

(Earth-to-space)

Existing Interference htterference Coordination htterference
services source victim distance, km margin, dB

Radio navigation Radio navigation Space research -- -6.3

spacecraft, Case 1

Radio navigation Space research -- -31.9

spacecraft, Case 2

Space research Radio navigation 331 0.0
Earth station

Table 7. Summary of sharing analysis for 25.25 to 27.0 GHz for space research
(space-to-Earth)

Existing hiterference Interference Coordination Interference

services som'ce victim distance, km margin, dB

Data relay Space research Data relay -- --11.5

satellite spacecraft satellite

(candidate band)

User (low Earth Space research

orbit) of data Earth station
relay satellite

-63.6

Table 8. Summary of sharing analysis for 27.5 to 29.5 GHz for space research

(space-to-Earth)

Existing Interference hlterference Coordination Interference

services source victim distance, km margin, dB

Fixed satellite Fixed satellite

(E-S) Earth station

Space researdt

spacecraft, Case 1

Space researdl
spacecraft, Case 2

Fixed and mobile Fixed or mobile

Space researdt
spacecraft, Case 1

Space researdl

spacecraft, Case 2

Space research 142.6 0.0
Earth station

Fixed satellite -- 17.0

(geostationary)

Fixed satellite -- - 1.4

(geostationary)

Space research 196 0,0
Earth station

Fixed or nu:,bile -- 24.8

Fixed or mobile -- -12.4
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Table9.Summaryofsharinganalysisfor30.0to31.3GHzforspaceresearch
(space-to-Earth)

Existing Interference h_terference Coordination Interference

services source victim distance, km margin, dis

Fixed satellite Fixed satellite Space research 138.6 0.0

(E-S), Earth station Earth station
mobile satellite

(E-S)

SFTSS a (S-E)

Fixed and mobile

Space research Fixed satellite -- 17.0

spacecraft, Case 1 (geostationary)

Space research Fixed satellite -- 56.6

spacecraft, Case 2 (geostationary)

SFTSS satellite Space research -- -24.6
Earth station

Space research SFTSS Earth -- 8.9

spacecraft, Case 1 station

Space research SFTSS Earth -- --47.4
spacecraft, Case 2 station

Fixed or mobile Space research 192 0.0
Earth station

Space research Fixed or mobile -- 24.8

spacecraft, Case 1

Space research Fixed or mobile -- -12.4

spacecraft, Case 2

a Standard frequency and time signal satellite.

Table 10. Summary of sharing analysis for 34.7 to 35.2 GHz for space research

(Earth-to-space)

Existing Interference Interference Coordination Interference
services source victim distance, km margin, dB

Fixed and mobile Fixed or mobile Space research -- 16.1

spacecraft, Case 1

Fixed or mobile Space research -- -21.1

spacecraft, Case 2

Space research Fixed or mobile 273.1 0.0
Earth station

Radiolocation Radlolocation Space research -- - 7.6

spacecraft, Case 1

Radiolocation Space research --- --63,9

spacecraft, Case 2

Space research Radiolocation 342.5 0.0
Earth station
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Table11.Summaryofsharinganalysisfor37.0to37.5GHzforapaceresearch
(space-to-Earth)

Existing Interference Interference Coordination Interference

services source victim distance, km margin, dB

Fixed satellite Fixed satellite

(E-S) Earth station

Space research

spacecraft, Case 1

Space research

spacecraft, Case 2

Fixed and mobile Fixed or mobile

Space research

spacecraft, Case 1

Space research

spacecraft, Case 2

Space research 120 0.0
Earth station

Fixed satellite -- 17.0

(geostationary)

Fixed satellite -- 58.3

(geostatlonary)

Space research 168.5 0.0
Earth station

Fixed or mobile -- 24.8

Fixed or mobile -- 3.5

Table 12. Summary of sharing analysis for 39.5 !o 40.5 GHz for space research

(Earth-to-space)

Existing Interference Interference Coordination Interference

services source victim distance, km margin, dB

Fixed satellite (S-E),

mobile satellite (S-E)

Fixed and mobile

Fixed satellite Space research -- 11.2

(geostationary) spacecraft, Case 1

Fixed satellite Space research -- 41.6

(geostationaxy) spacecraft, Case 2

Space research Fixed satellite 198.8 0.0
Earth station Earth station

Fixed or mobile Space research -- 16.1

spacecraft, Case 1

Fixed or mobile Space research -- 7.2

spacecraft., Case 2

Space research Fixed or mobile 238.2 0.0
Earth station
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20.0

FREQUENCY, GHz

31.0 31.8 34.2 35.2

31.3 32.3

40.5

BAND A: 31.0 TO 31.3 GHz

1. SECONDARY, WORLDWIDE ALLOCATION FOR SPACE RESEARCH
2. PRIMARY ALLOCATION FOR SPACE RESEARCH IN BULGARIA, CUBA, HUNGARY, MONGOLIA,

POLAND, THE GERMAN DEMOCRATIC REPUBLIC, CZECHOSLOVAKIA, AND THE U.S.S.R.

BAND B: 31.8 TO 32.3 GHz

1. SECONDARY, WORLDWIDE ALLOCATION FOR SPACE RESEARCH
2. PRIMARY ALLOCATION FOR DEEP SPACE RESEARCH (SPACE-TO-EARTH) IN AUSTRALIA,

SPAIN, AND THE UNITED STATES
3. PRIMARY ALLOCATION FOR SPACE RESEARCH IN BULGARIA, CUBA, HUNGARY, MONGOLIA,

POLAND, THE GERMAN DEMOCRATIC REPUBLIC, CZECHOSLOVAKIA, AND THE U.S,S.R.

BAND C: 34.2 TO 35.2 GHz

1. SECONDARY, WORLDWIDE ALLOCATION FOR SPACE RESEARCH
2. PRIMARY ALLOCATION FOR DEEP SPACE RESEARCH (EARTH-TO-SPACE) IN AUSTRALIA,

SPAIN, AND THE UNITED STATES IN THE 34.2- TO 34.7-GHz BAND

3. PRIMARY ALLOCATION FOR SPACE RESEARCH IN BULGARIA, CUBA, HUNGARY, MONGOLIA,
POLAND, THE GERMAN DEMOCRATIC REPUBLIC, CZECHOSLOVAKIA, AND THE U.S.S,R,

Fig. 1. Existing space research (active) allocations (20 GHz to 40.5 GHz).

20.0

EXISTING
SERVICES

FREQUENCY, GHz

21.4 22.0 23,0 23.6 24.25 25.25

FIXED RADIO

MOBILE NAVIGATION

S_E

27.0 27.5 29.5 30.0

1 l
FIXED

MOBILE

FIXED SATELLITE (E-S)

FIXED

MOBILE

INTE RSATE LLITE

RADIO ASTRONOMY

FIXED

MOBILE

EARTH EXPLORATION SATELLITE (S-S)

STANDARD FREQUENCY AND TIME

SIGNAL SATELLITE (E-S)

SPACE RESEARCH CANDIDATE - _ SPACE TO EARTH

[_ EARTH TO SPACE

Fig. 2. Candidate bands for space research sharing analysis, 20- to 30-GHz range.
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EXISTING
SERVICES

FREQUENCY, GHz

30,0 31.3 34.2 35.2 37.0 37.5

i i
FIXED SATELLITE (E-S) RADIOLOCATION

MOBILE SATELLITE (E-S) FIXED

STANDARD FREQUENCY AND MOBILE

TIME SIGNAL SATELLITE (S-E) SPACE RESEARCH

FIXED

MOBILE

SPACE RESEARCH

SPACE RESEARCH CANDIDATE - _-_ SPACE TO EARTH

_'-'l EARTH TO SPACE

FIXED

MOBILE

FIXED SATELLITE (E-S)

39.5 40,5

E-S

FIXED

MOBILE

FIXED SATELLITE (S-E)

MOBILE SATELLITE (S-E)

Fig. 3. Candidate bands for space research sharing analysis, 30- to 40.5-GHz range.

j__ STATtoNSPACE _ RELAY

RESEARCH / \ ,_ J--'-I "
EARTH • ". __ \

_" ATMOSPHERE L1 L2

Fig. 4. Space research spacecraft located near the Moon.
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r 1
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I
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\ /
\ /
\
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/

I"
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Fig. 5. Space research spacecraft located In low Earth orbit.
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24-GHzUPLINK
(Kup) _ 9/:8(0.7264296 GHz)

303Fa ,,...j
(24.4564632 GHz) t

129¢Fa

(23.7300336 GHz)

PHASE
DET

F (s)

l 7_, j_--].

27-GHz DOWNLINK

Kdn
344 Fa

(27,7657536 GHz)

8-GHz DOWNLINK

Xdn
ii

105 Fa

(8.475012 GHz)

2-GHz DOWNLINK

S dn e..
28 Fa
(2.2600032 GHz)

FREQUENCY RATIOS:

24-GHz UPLINK/27-GHz DOWNLINK = 303/344

24-GHz UPLINK/8-GHz DOWNLINK = 303/105

7c-1-

24- TO 27-GHz {K-BAND) TRANSPONDER NO. 1

24-GHz UPLINK/2-GHz DOWNLINK = 303/28
8-GHz DOWNLINK/2-GHz DOWNLINK = 900/240 (15/4)

VCO(_)
-_ ,--=,'- Fa (4 × 20.1786 M Hz)

Fig. 6. Example of a circuit used to provide coherence between the space research uplink and the downllnks.
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This article summarizes the design concepts and measured performance charac-

teristics of an X-band (7162-Mltz/8415-MHz) breadboard deep-space transponder

(DST) for future spacecraft applications, with the first use scheduled for the Comet

Ren dez vous Asteroid Flyby (CRA F) an d Cassini missions in 1995 an d 1996, respec-

tively. The DST consists of a double-conversion, superheterodyne, automatic phase-

tracking receiver, and an X-band (8415-Mllz) exciter to drive redundant downlink

power amplifiers. The receiver acquires and coherently phase tracks the modulated

or unmodulated X-band (7162-Mtlz) uplink carrier signal. The exciter phase modu-

lates the X-band (8415-MHz) downlink signal with composite telemetry and ranging

signals. The receiver measured tracking threshold, automatic gain control, static

phase error, and phase jitter characteristics of the breadboard DST are in good

agreement with the expected performance. The measured results show a receiver

tracking threshold of-158 dBm and a dynamic signal range of 88 dB.

I. Introduction

Telecommunication transponders for deep-space space-

craft applications provide independent uplink command

and turnaround ranging functions, as well as downlink

telemetry and radiometric capabilities. The spacecraft

deep-space transponder (DST) is an element in the over-

all Deep Space Network (DSN) system. A balanced de-

sign approach for all the elements of the system must be

applied to achieve end-to-end system performance capa-

bilities that include telecommunications and radiometric

functions and multichannel and multifrequency capabili-

ties [1]. The DST functions include:

(1) precision phase/frequency reference transfer from

the uplink signal

(2) demodulation of the command and ranging signals

from the uplink carrier

(3) generation of a coherent or noncoherent downlink

tracking signal for the Earth-based DSN
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(4) providing downlink signal modulation with compos-

ite telemetry data and turnaround ranging or differ-

ential one-way ranging (DOR) signals

(5) providing a functional capability to utilize an ex-

ternal ultrastable oscillator (USO) to generate the

downlink signal

This article describes the design, implementation, and

performance of a breadboard DST configuration. The de-
sign specifications and functional description of the DST

are summarized in Section II. The DST block diagram

is described in Section III. The experimental results of a

breadboard DST are presented in Section IV. Finally, some
conclusions are drawn in Section V.

II. Key Design Requirements

The design requirements for the DST are summarized

in Table 1. The DST is to provide a receive and trans-

mit capability at X-band (7162 MHz/8415 MHz) with the

necessary reference signals to generate independent S-band
(2295-MHz) and Ka-band (31,977-MHz) downlink signals

external to the DST. Frequency translation ratios have

been selected to provide coherent operation at S-band,

X-band, and Ka-band, with overlap in all three frequency
bands for simultaneous coherent operation. The selected

transmit/receive frequency translation ratio for DST co-

herent operation at X-band (8415 Mttz down, 7162 MHz

up) is 880/749. The DST received uplink is at an assigned
channel in the frequency range from 7145 to 7190 MHz

(749 F1). The DST X-band (880/'1 = 8415 MHz) down-
link frequency for the corresponding frequency channel as-
signment is in the frequency range from 8400 to 8450 MHz

(Table 1). The receiver performance requirements include

a maximum noise figure of 2.5 dB, a tracking threshold

level of -158 dBm, and a tracking range of -I-250 kHz

at the assigned channel frequency. The acquisition and
tracking rate is 550 Hz/sec at signal levels greater than

-110 dBm. The specified nominal output power of the ex-

citer is +12.5 dBm. The exciter output is phase modulated

to a maximum phase deviation of -t-2.5 tad with a radio fre-

quency (RF) modulation bandwidth greater than 40 MHz.

The downlink phase noise requirements are 2.5 deg root

mean square (rms) in the coherent mode and 2.8 deg rms in
the noncoherent mode, when measured in a 10-Hz double-

sided noise bandwidth DSN tracking receiver. The DST

ranging and carrier phase delay variations over the flight

acceptance (FA) temperature range (-10 to +55 deg C)

are to be less than 22 nsec and 2.5 nsee, respectively. The

differential downlink carrier phase delay variation is to

be less than 1 nsec over the FA temperature range. The

hardware qualification temperature range is from -20 to

+75 deg C, with an expected flight operating range from
+5 to +45 deg C. The hardware must withstand 15-krad

(silicon) total radiation dose, 18.4-gravities (g) rms accel-

eration, 3000-g rms pyroshock, 12-g peak sine vibration,

and 17.8-g rms random vibration environments.

III. Transponder

A, Block Diagram and Frequency Scheme

The DST frequency-generation scheme and functional
block diagram are shown in Fig. 1. The receiver is imple-

mented as a double-conversion, super-heterodyne, phase-

lock tracking receiver, with a fixed-frequency second in-

termediate frequency (IF). The first local oscillator (LO)

signal at 880 F1 and the second LO signal at 131 F1-F2 are

generated by a dielectric resonator oscillator (DRO) [2,3]

and a surface acoustic wave resonator oscillator (SRO), re-
spectively. Both of these oscillators are phase locked to the

12 F1 (l14.75-MHz) voltage-controlled oscillator (VCO).

The 12 Fl VCO is in turn phase locked to the uplink car-
rier. The first and second intermediate frequencies are at

131 F_ (1252.6875 MHz) and F2 (56.648 MHz), respec-
tively. Coherent carrier automatic gain control (AGC) is

employed in both of the IF sections to provide a constant

signal plus noise at the carrier loop phase detector.

The coherent downlink carrier at 880 F1 is provided by
the LO DRO when the DST is operating in the coherent

mode from the VCO. In the noncoherent mode, an 880 F1

frequency is generated by the exciter DRO phase locked

to the DST 12 F1 auxiliary oscillator or the external USO.

The noncoherent downlink signal is automatically selected
by the receiver AGC function in the absence of an uplink

signal. The DST's 880 F1 phase-modulated signal [4] pro-
vides drive for the redundant spacecraft power amplifiers.

B. Automatic Phase Tracking Loop

In the coherent mode, the 880/'1 downlink signal gener-

ated in the DST exciter from the 12 F1 VCO signal is phase

coherent with the 749 F1 received signal. Phase coherence

is accomplished by an automatic phase-lock loop (PLL)
in the receiver. The receiver PLL transfer function is a

type-I, second-order lowpass filter [5,6]. The PLL design
[5,6] is an involved iterative task and is usually a compro-

mise between fast low-error tracking operation and noise

response. The selection of the loop filter time constants

(ti and t_), the loop gain (Kv), and the noise equivalent

pre-detection bandwidth (Bt.), depends on six relevant re-

ceiver performance requirements. The requirements are:

(1) the steady-state tracking error equal to 1 deg per

40 kHz offset at carrier levels greater than -1 l0 dBm
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(2) the minimum acceptable signal-to-noise power ratio

(SNR) in the carrier channel at the phase detector
input equal to -25 dB

(3) the minimum acquisition sweep rate at a strong sig-

nal (> -110 dBm) equal to 550 Hz/sec

(4) the damping factor at the theoretical threshold of
(-158 dBm) equal to 0.5

(5) the damping factor at 10 dB above tile theoretical

threshold equal to 0.8

(6) the two-sided loop noise bandwidth (2BLo) at the

theoretical threshold (-158 dBm) equal to 18 IIz

Using tile above set of transponder performance re-
quirements, the loop parameters tl, t_, and Kv are se-

lected using a PLL algorithm. Physical limitations of the

components are also considered in this selection. Table 2

lists these loop parameters and compares them for several

transponders: NASA Standard, Galileo, and Magellan.

C. Residual Phase Noise

In the coherent carrier mode, residual phase noise is

defined for a noise-free received signal case. Thus, phase

noise on the downlink, unmodulated, carrier signal consists
primarily of contributions from tile three phase-locked os-

cillators 12 F1 VCO, SRO, and DRO used in the DST

implementation. Individual phase noise power spectral
density functions [7,8,9] for these contributors are used in

a comprehensive computer program to predict the phase

noise of the closed-loop receiver. Total residual phase noise
in the output is the mean square sum of all noise sources.
The predicted phase noise for the DST in the coherent

mode is shown in Fig. 2. In the intervals between 5 IIz

and 25 MIIz on each side of the carrier, the root mean

square (rms) phase noise is 0.448 deg rms, which is well

below the maximum allowable 2.5 deg for coherent down-

link. The dominant contributor to this rms phase noise is
the 12 F1 VCO; the remaining contributions are less than

10 percent of the VCO contribution. Predicted rms phase
noise and Allan deviation [8] are compared to the specified

values in Table 3. The results of the analysis indicate that
the coherent mode specifications will be met for both the

rms phase noise and the Allan deviation. The closed-loop

receiver servomechanism band limits the VCO spectrum,
thus providing tile superior performance in the coherent
mode.

D. Carrier Delay and Delay Variation

The phase variation associated with the temperature

change of tile transponder can be estimated by construct-

ing a model from the block diagram. The analysis assumes

that the frequency multipliers are major contributors of

tile phase delay variation with temperature. The contri-

bution for each multiplier is assumed to be three degrees of

phase per degree Celsius. The estimated value of the DST

carrier phase delay variations from input to output is equal

to 0.075 nsec over the FA (-10 deg C to +55 deg C) tem-

perature range. The predicted carrier delay data indicate
that DST satisfies the requirement of maxinmm allowable

delay variations equal to 2.5 nsec. IIardware performance

characteristics over the temperature environment will be

measured on an engineering model DST in 1991.

IV. Transponder Experimental Results

A breadboard DST X-band receiver and exciter shown

in Fig. 1 (without S-band and Ka-band exciters) was im-

plemented and performance characterization accomplished
in both the Transponder Development Laboratory and

the Telecommunications Development Laboratory (TDL).
The evaluation measurements include receiver tracking
threshold sensitivity, static phase errors for X-band

(7162 MHz) uplink frequency offset, swept acquisition

characteristics, and AGC versus uplink signal level. All

measurements were made at room temperature (25 deg C).
The measured tracking threshold sensitivity at the receiver

best lock frequency (BLF) (approximately channel center)
is -158 dBm, which is in good agreement with the design
threshold value (-157.3 dBm) using the receiver loop noise

bandwidth of 18 IIz and the measured LNA noise figure
of 2.9 dB at 25 deg C. Tile measured receiver threshold

characteristics show good correlation with expected per-

formance over tile tracking range as shown in Fig. 3. The
receiver acquisition characteristics were measured at an

input signal level of -110 dBm. The measured values for

tracking range and tracking rate are -t-270 kHz at design

center frequency and 800 ttz/sec, respectively, and meet

the specified requirements (Table 1). Figure 4 shows a lin-

ear relationship for tile static phase error voltage versus

uplink frequency offset over the receiver tracking range.
The AGC loop-filter amplifier-output voltage controls the

gain in the first and second intermediate frequency (IF)

amplifiers. The AGC voltage versus uplink signal level at

the best lock frequency and at frequency offsets (FOs) of

+250 klIz from BLF are shown in Fig. 5. As the receiver

input signal varies from a strong signal level (-70 dBm) to

the threshold level (-158 dBm), the AGC control voltage
varies approximately linearly. No receiver false lock or self

lock resulted during the test phase.

A comparison of measured to calculated phase jitter

characteristics as a function of receiver uplink signal level
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is shown in Fig. 6. The TDL-system-measured residual
phase jitter at a downlink signal level of -100 dBm with no

uplink signal is equal to 2.62 deg rms. The TDL measured

phase jitter values for the breadboard DST and Magellan

transponders at the same uplink signal level of-100 dBm

are equal to 3.03 deg rms and 3.98 deg rms, respectively

(referred to the same 2.62 deg rms TDL system residual

phase jitter).

V. Conclusions

Design concepts and system architecture for a high-

performance X-band (7162-MHz/8415-MHz) DST for
deep-space spacecraft applications have been presented.

The DST has been successfully breadboarded and eval-

uated. New technologies such as a dielectric resonator os-

cillator, X-band (8415-MHz) phase modulator, and SRO

have been integrated into the design. The Telecommu-

nications Development Laboratory measurements on the
breadboard DST achieved a threshold level of-158 dBm

with a dynamic range of 88 dB and excellent acquisition

and tracking characteristics. The measured tracking re-

ceiver threshold and phase jitter data are in good agree-

ment with the predicted characteristics. The Jet Propul-

sion Laboratory breadboard X-band DST design and eval-

uation have demonstrated a basic model configuration for
implementation of future deep-space transponders, and an

engineering model development phase is expected to be

completed by September 1991.
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Table 1. Deep-space transponder specifications

Parameter Design requirement

1. Up[ink frequency allocation

2. Downlink frequency allocation

3. Frequency translation ratios

Channel 14 up[ink frequency

X-band down/ink

S-band downlink

Ka-band down]ink

4. Receiver parameters

Carrier threshold

Dynamic range

Noise figure at DST receiver input

Acquisition and tracking rate

Tracking range

Tracking error

Capture range

5. Exciter parameters

Frequency for coherent operation

Frequency for noncoherent operation

IRF output power level

Output impedance

Spurious signals

Modulation bandwidth

Modulation index

Modulation sensitivity

Modulation amplitude linearity

Modulation index stability

Residual phase noise

Input-to-output carrier phase delay variation

Differential phase delay variation

Ranging phase delay variation

7145 to 7190 MHz, deep space

8400 to 8450 MHz, deep space

7162.3125 MHz (749 El)

880/749 (8415 MHz)

240/749 (2295 MHz)

3344/749 (31,977 MHz)

- 157.3 dBm

88 dB (carrier threshold to -70 dBm)

2.5 dB maximum over -20 deg C to +75 deg C

550 Hz/sec at signal level > -110 dBm

4-250 kHz minimum

< 1 deg/40 kHz at carrier level > -110 dBm

4-1.3 kHz at signal level > -120 dBm

880/749 time up[ink frequency

880F1

+12 dBm, nominal

50 4- 5 ohms, nominal

60 dBm below the carrier

> 40 MHz

Ranging: 3-9 dB carrier suppression

Telemetry: 0-15 dB carrier suppression

DOR: 0-1.1 dB carrier suppression

2 rad peak/volt peak

4-2.5 rad at 4-8 percent linearity

4-10 percent over -20 deg C to +75 deg C

< 2.5 deg rms in the coherent mode

< 2.8 deg rms in the noncoherent mode

< 2.5 nsec over -10 deg C to +55 deg C

< 1 nsec over -10 deg C to +55 deg C

< 22 nsec over -10 deg C to +55 deg C
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Table 3. Transponder coherent mode predicted rms phase
noise and Allan deviation

Predicted output Specification

RMS phase noise 0.448
(deg rms)

Allan deviation

(integration time):

0.01 sec 2.6 x 10 -11

1.0 sec 2.6 x 10 -13

1000 sec 2.4 x 10 -15

2.5

(5 Hz to 25 MHz)

3 x 10 -11

1,2 x 10 -12

5 x 10 -15
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